Working with a difference quotient involving a square root

Suppose $f(x)=\sqrt{x}$ and suppose we want to simplify the differnce quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

as much as possible (say, to eliminate the h in the denominator).
Substituting the definition of f into the quotient, we have

$$
\frac{f(x+h)-f(x)}{h}=\frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

at which point we are stuck, as far as basic algebraic manipulations go.
To the rescue, however, comes the conjugate.
For any expression of the form $\sqrt{A}-\sqrt{B}$, we say its conjugate is $\sqrt{A}+\sqrt{B}$, and vice versa: the conjugate of the latter is the former: we get to the expressions conjugate by simply changing the sign of the operation between the two square root expressions (plus to minus, or minus to plus).

By writing the number 1 as the expression's conjugate divided by itself, we get a powerful tool for manipulating these types of expressions.

With

$$
\frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

the conjugate we want to use is $\sqrt{x+h}+\sqrt{x}$, so we multiply our expression by the conjugate over itself:

$$
\frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} .
$$

The key idea is that the numerators multiply in a nice way.

Note that the two numerators together have the form

$$
(A-B) \cdot(A+B)
$$

which is equal to $A^{2}-B^{2}$ (you might recall the phrase difference of squares). The squaring eliminates the square roots from the numerator.

As a result, our expression above becomes
$\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}=\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}=\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{h}{h} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{\sqrt{x+h}+\sqrt{x}}$.
Thus, we have shown that

$$
\frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{1}{\sqrt{x+h}+\sqrt{x}} .
$$

This is as simplified as we can make it, and it has the advantage over the original expression in that it has no h multiplier in the denominator (which will be a consideration when you see this sort of thing again in Calculus).

