Here is an exponential modeling example.
In 1980, City X had a population of 1.2 million. City X's population increases by 0.8% every year.
In 1990, City Y had twice as many people as City X, but only 85% more people than City X in 2005.

If City Y's population is growing exponentially, when will the populations be equal?
We begin by finding exponential models for each city. We will express these in units of millions. Let $t=0$ represent 1980, so that throughout t represents years after 1980.
Let P_{X} be the population of City X. Then we seek A_{0} and b, constants, such that

$$
P_{X}=A_{0} b^{t}
$$

Since $P_{X}=1.2$ when $t=0$, we have $A_{0}=1.2$.
Then since the population increases by 0.8% per year, we know that $b=1.008$. In general, a constant increase of $r \%$ per year translates to a b value of $1+\frac{b}{100}$.
Thus

$$
P_{X}=1.2(1.008)^{t}
$$

(Since $1.008=e^{\ln 1.008}=e^{0.0079681696}$, we may write

$$
P_{X}=1.2\left(e^{0.0079681696}\right)^{t}=1.2 e^{0.0079681696 t}
$$

which is of the form $A_{0} e^{s t}$, another popular form for exponential functions.)
For city Y, we first calculate the population of City X in 1990. We have

$$
P_{X}=1.2(1.008)^{10}=1.2995
$$

In 1990, City Y's population was twice this, i.e., $P_{Y}=2.5991$.
In 2005, City X had a population of $1.2(1.008)^{25}=1.4645$. City Y was 85% more than this, so

$$
P_{Y}=1.85(1.4645)=2.7094
$$

This gives us two data points for City Y. Assuming $P_{Y}=B_{0} c^{t}$, we seek B_{0} and c, from the equations

$$
\begin{aligned}
& 2.5991=B_{0} c^{10} \\
& 2.7094=B_{0} c^{25}
\end{aligned}
$$

Dividing the first into the second, we find

$$
\frac{2.7094}{2.5991}=1.04244=c^{15}
$$

so $c=1.04244^{1 / 15}=1.0027746$.

Plugging this in to $2.5991=B_{0} c^{10}$ and solving for B_{0}, we find $B_{0}=2.5280$.
Thus $P_{Y}=2.5280(1.0027746)^{t}$.
(Since $1.0027746=e^{\ln 1.0027746}=e^{0.0027707}$, we may also write

$$
P_{Y}=2.5280\left(e^{0.0027707}\right)^{t}=2.5280 e^{0.0027707 t}
$$

which has the form $A_{0} e^{s t}$, another popular form for exponential functions.)
Setting $P_{X}=P_{Y}$, and solving t, we have

$$
\begin{gathered}
1.2(1.008)^{t}=2.5280(1.0027746)^{t} \\
\ln 1.2+t \ln 1.008=\ln 2.5280+t \ln 1.0027746 \\
t=\frac{\ln 2.5280-\ln 1.2}{\ln 1.008-\ln 1.0027746}=143.363
\end{gathered}
$$

Thus the populations will be equal 143.363 years after 1980.

