Inverse Function Example

Let's find the inverse function for the function

$$
f(x)=\sqrt{x}+2 \sqrt{x+1} .
$$

The method is always the same: set $y=f(x)$ and solve for x. If you can get x written as a function of y, then that function is $f^{-1}(y)$.

So, here goes:

$$
\begin{aligned}
y & =f(x) \\
y & =\sqrt{x}+2 \sqrt{x+1} \\
y-\sqrt{x} & =2 \sqrt{x+1} \\
(y-\sqrt{x})^{2} & =(2 \sqrt{x+1})^{2} \\
y^{2}-2 y \sqrt{x}+x & =4(x+1)=4 x+4 \\
y^{2}-2 y \sqrt{x} & =3 x+4 \\
-2 y \sqrt{x} & =(3 x+4)-y^{2} \\
4 y^{2} x & =(3 x+4)^{2}-2 y^{2}(3 x+4)+y^{4} \\
4 y^{2} x & =9 x^{2}+24 x+16-6 y^{2} x-8 y^{2}+y^{4}
\end{aligned}
$$

So, finally, we have

$$
0=9 x^{2}+\left(24-10 y^{2}\right) x+16-8 y^{2}+y^{4}
$$

We can use the quadratic formula to solve for x :

$$
\begin{aligned}
x & =\frac{10 y^{2}-24 \pm \sqrt{\left(24-10 y^{2}\right)^{2}-36\left(16-8 y^{2}+y^{4}\right)}}{18} \\
& =\frac{5}{9} y^{2}-\frac{4}{3} \pm \frac{1}{18} \sqrt{64 y^{4}-192 y^{2}} \\
& =\frac{5}{9} y^{2}-\frac{4}{3} \pm \frac{4}{9} \sqrt{y^{4}-3 y^{2}} .
\end{aligned}
$$

Thus, we have, at last almost found an inverse for $f(x)$. Two bits of trouble: (1) the \pm business suggests that perhaps $f(x)$ is not one-to-one, and (2) if it is one-to-one, which of the + or - do we pick?
Here we will rely on our knowledge of the square root function, \sqrt{x}. It is always increasing: that is, if $a>b$ then $\sqrt{a}>\sqrt{b}$. This means that the graph of \sqrt{x} moves upward as we move from left to right. From this you can conclude that \sqrt{x} is one-to-one. Also, since $\sqrt{x+1}$ is a horizontal shift of \sqrt{x}, it is also an increasing function. Multiplying it by two does not change that, so $2 \sqrt{x+1}$ is an increasing function too. Finally, if you add two increasing functions together, you get an increasing function. So, $f(x)=\sqrt{x}+2 \sqrt{x+1}$ is an increasing function, and is one-to-one.

With that taken care of, now we just have to decide what to do with the \pm. One way to deal with it is by checking a point (or more if you like) to see which one actually undoes $f(x)$.

For instance,

$$
f(4)=\sqrt{4}+2 \sqrt{5}=6.47213595 \ldots
$$

Plugging this in for y in

$$
x=\frac{5}{9} y^{2}-\frac{4}{3} \pm \frac{4}{9} \sqrt{y^{4}-3 y^{2}}
$$

gives us

$$
x=21.93807989999906531 \pm 17.93807989999906531
$$

Clearly, we'll have to take the - option to get $x=4$. Thus,

$$
f^{-1}(y)=\frac{5}{9} y^{2}-\frac{4}{3}-\frac{4}{9} \sqrt{y^{4}-3 y^{2}}
$$

or, if you like

$$
f^{-1}(x)=\frac{5}{9} x^{2}-\frac{4}{3}-\frac{4}{9} \sqrt{x^{4}-3 x^{2}}
$$

Whew.
Here is a figure showing the function, $f(x)$ (the solid curve) and its inverse function $f^{-1}(x)$ (the dashed curve). The line $y=x$ is shown to so you can clearly see that the graphs are symmetric with respect to that line. An inverse function will always have a graph that looks like a mirror image of the original function, with the line $y=x$ as the mirror.

