Fixed points of linear to linear rational functions

Suppose the function

$$
f(x)=\frac{A x+B}{x+C}
$$

has fixed points x_{1} and x_{2} (with $x_{1} \neq x_{2}$). In other words,

$$
f\left(x_{1}\right)=x_{1} \text { and } f\left(x_{2}\right)=x_{2} .
$$

Let's assume for now that x_{1} and x_{2} are not zero.
Then

$$
f\left(x_{1}\right)=x_{1}=\frac{A x_{1}+B}{x_{1}+C}
$$

and

$$
f\left(x_{2}\right)=x_{2}=\frac{A x_{2}+B}{x_{2}+C}
$$

so that

$$
\begin{equation*}
x_{1}^{2}+x_{1} C=A x_{1}+B \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}^{2}+x_{2} C=A x_{2}+B \tag{2}
\end{equation*}
$$

Multiplying equation (1) by x_{2} and equation (2) by x_{1} yields

$$
\begin{equation*}
x_{1}^{2} x_{2}+x_{1} x_{2} C=A x_{1} x_{2}+B x_{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1} x_{2}^{2}+x_{1} x_{2} C=A x_{1} x_{2}+B x_{1} \tag{4}
\end{equation*}
$$

Subtracting equation (4) from equation (3) yields

$$
x_{1}^{2} x_{2}-x_{1} x_{2}^{2}=B\left(x_{2}-x_{1}\right)
$$

so that

$$
B=\frac{x_{1} x_{2}\left(x_{1}-x_{2}\right)}{x_{2}-x_{1}}=-x_{1} x_{2}
$$

Now this is all assuming that x_{1} and x_{2} are not zero. Suppose 0 is a fixed point of f. Then

$$
f(0)=0=\frac{B}{C}
$$

from which we can immediately conclude that $B=0$, so in this case $B=-x_{1} x_{2}$.
Thus B is determined by the fixed points of the function.
What this means is that if we are seeking a linear-to-linear rational function with given fixed points, we are not free to pick B to be whatever we want. We are free to pick A or C to be whatever we want, however.

So, a good procedure for finding a linear-to-linear rational function with specified fixed points x_{1} and x_{2} is to first pick A or C, and then solve for the other variables. This will always work, except we do need to be careful to not pick C to be $-x_{1}$ or $-x_{2}$, or pick A equal to x_{1} or x_{2} (why?).

