Why are all linear-to-linear rational functions essentially the same?

The family of linear-to-linear rational functions, that is, functions of the form

$$
f(x)=\frac{a x+b}{c x+d}
$$

with a, b, c, and d constant and $a c \neq 0$, are often encountered in mathematics. Although there are four parameters, and the apparent potential for quite a diverse collection of functions in this family, it turns out that all of these functions behave the same way.
To see this, start by dividing $c x+d$ into $a x+b$. The result is

$$
f(x)=\frac{a x+b}{c x+d}=\frac{a}{c}+\frac{b-\frac{a d}{c}}{c x+d}
$$

which we can rewrite as

$$
f(x)=\frac{a}{c}+\left(b-\frac{a d}{c}\right) \frac{1}{c x+d}=\frac{a}{c}+\left(b-\frac{a d}{c}\right) \frac{1}{c\left(x+\frac{d}{c}\right)}=\frac{a}{c}+\frac{b c-a d}{c^{2}} \frac{1}{x+\frac{d}{c}} .
$$

If we now let

$$
A=\frac{a}{c}, B=\left(\frac{b c-a d}{c^{2}}\right), \text { and } C=\frac{d}{c}
$$

then we can write

$$
f(x)=A+B \frac{1}{x+C}
$$

At this point, we can now see that the graph of $f(x)$ can be thought of as the graph of $\frac{1}{x}$ after it has undergone a series of horizontal and vertical stretches and shifts. As a result, the graphs of all linear-tolinear rational functions look essentially the same as the graph of $\frac{1}{x}$, and hence all look essentially the same.
Note that $f(x)$ has a single vertical asymptote at $x=-\frac{d}{c}$, and a horizontal asymptote of $y=\frac{a}{c}$. With this information, there are essentially two shapes the graph of $f(x)$ could have:

or

To figure out which one it is, all you need is a single point. Sketch the asymptotes, then pick a particular x value to get a point $(x, f(x))$ on the graph, and sketch in the rest.

