Determining Quadratic Functions

A linear function, of the form $f(x)=a x+b$, is determined by two points. Given two points on the graph of a linear function, we may find the slope of the line which is the function's graph, and then use the point-slope form to write the equation of the line.
A quadratic function, of the form $f(x)=a x^{2}+b x+c$, is determined by three points. Given three points on the graph of a quadratic function, we can work out the function by finding a, b and c algebraically.
This will require solving a system of three equations in three unknowns. However, a general solution method is not needed, since the equations all have a certain special form. In particular, they all contain a $+c$ term, and this allows us to simplify to a two variable/two equation system very quickly.
Here is an example.
Suppose we know $f(x)=a x^{2}+b x+c$ is a quadratic function and that $f(-2)=5, f(1)=8$, and $f(6)=4$. Note this is equivalent to saying that the points $(-2,5),(1,8)$ and $(6,4)$ lie on the graph of f.
These three points give us the following equations:

$$
\begin{gather*}
5=a\left((-2)^{2}\right)+b(-2)+c=4 a-2 b+c \tag{1}\\
8=a\left(1^{2}\right)+b(1)+c=a+b+c \tag{2}\\
4=a\left(6^{2}\right)+b(6)+c=36 a+6 b+c \tag{3}
\end{gather*}
$$

Notice that $+c$ terms dangling on the right-hand end of each equation.
By subtracting the equations in pairs, we eliminate the $+c$ term, and get two equations and two unknowns.
We find, by subtracting equation (2) from equation (1), and by subtracting equation (2) from equation (3), that

$$
\begin{align*}
3 a-3 b & =-3 \tag{4}\\
35 a+5 b & =-4 \tag{5}
\end{align*}
$$

This system is then easily solved. We might, for example, simplify equation (4) to

$$
b-a=1
$$

so that $b=a+1$, which when substituted into equation (5), yields

$$
35 a+5(a+1)=-4
$$

which gives us

$$
a=-\frac{9}{40}
$$

from which we determine that

$$
b=\frac{31}{40} \text { and } c=\frac{149}{20} .
$$

and so our function is

$$
f(x)=-\frac{9}{40} x^{2}+\frac{31}{40} x+\frac{149}{20}
$$

This method of subtraction will always work to reduce the system of three equations to a system of two. From that point, any method can be used to solve for a and b, and then one of the original equations is used to find c.

