How do I get sinusoidal functions into the "standard" form?

When confronted with a sinusoidal function, it is helpful to have it (or get it into) the form

$$
f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D
$$

since we are able to read off the parameters A, B, C, and D; these parameters determine the shape and location of the graph of function. We are always able to put sinusoidal functions into this form with $A>0$, and $B>0$.

Frequently, sinusoidal functions do not appear to us in this form, but we can rewrite in that form. The following are three examples of how this goes.

1. $f(x)=\sin (3 x+1)$

We factor out the 3 from the expression $3 x+1$ to get

$$
f(x)=\sin \left(3\left(x+\frac{1}{3}\right)\right)
$$

We want $\frac{2 \pi}{B}=3$, so $B=\frac{2}{3} \pi$. Thus,

$$
f(x)=\sin \left(\frac{2 \pi}{\frac{2}{3} \pi}\left(x+\frac{1}{3}\right)\right) .
$$

And we can see that $A=1, B=\frac{2}{3} \pi, C=-\frac{1}{3}, D=0$.
2. $f(x)=\sin (2-7 x)$

We can factor the -7 :

$$
f(x)=\sin \left(-7\left(-\frac{2}{7}+x\right)\right)
$$

In order to end up with $B>0$ we have to do something about that -7 . We can use the following identity:

$$
\sin (-x)=\sin (x+\pi) \text { for all } x
$$

This gives us

$$
\begin{gathered}
f(x)=\sin \left(-7\left(-\frac{2}{7}+x\right)\right)=\sin \left(7\left(-\frac{2}{7}+x\right)+\pi\right)=\sin \left(7\left(-\frac{2}{7}+x+\frac{\pi}{7}\right)\right) \\
=\sin \left(7\left(x-\left(\frac{2}{7}-\frac{\pi}{7}\right)\right)\right)=\sin \left(\frac{2 \pi}{\frac{2}{7} \pi}\left(x-\left(\frac{2}{7}-\frac{\pi}{7}\right)\right)\right)
\end{gathered}
$$

So $A=1, B=\frac{2}{7} \pi, C=\frac{2-\pi}{7}, D=0$.
3. $f(x)=-\frac{3}{5} \sin (5-x)$

We can use the identity

$$
-\sin (x)=\sin (-x) \text { for all } x
$$

to get a positive A value:

$$
f(x)=\frac{3}{5} \sin (-(5-x))=\frac{3}{5} \sin (x-5)=\frac{3}{5} \sin \left(\frac{2 \pi}{2 \pi}(x-5)\right) .
$$

So $A=\frac{3}{5}, B=2 \pi, C=5, D=0$.

