Math 124 F Autumn 2012 Mid-Term Exam Number Two November 20, 2012 Answers

There were two versions of the exam.

Version A: The specified interval in problem 1 is $\frac{1}{4} \le x \le \frac{3}{4}$.

- 1. The absolute minimum is $f(e^{-1/2}) = 0.831985...$ and the absolute maximum if $f(\frac{1}{4}) = 0.917004043204...$
- 2. The rate is $\frac{27}{4\pi}$ cm/sec.
- 3. (a) $\frac{d\theta}{dt} = \frac{600}{10081}$ radians per second (b) θ is changing fastest at $t = \frac{10}{3^{1/4}}$ seconds after launch.
- 4. (a) Many answers are possible. One uses the fact that $\ln e^4 = 4$ to yield an approximation of $4 + \frac{54-e^4}{e^4} = 3.989044499991...$ (b) The *y*-coordinate is approximately -0.01.
- 5. The two slopes are -16/5 and 16/3.
- 6. (a) $x = \pm \frac{1}{\sqrt{2}}$ (b) f(x) is increasing only on $-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$. (c) f(x) is decreasing on $x \le -\frac{1}{\sqrt{2}}$ and $x \ge \frac{1}{\sqrt{2}}$. (d) f(x) has a local minimum at $x = -\frac{1}{\sqrt{2}}$ and a local maximum at $x = \frac{1}{\sqrt{2}}$. (e) f(x) has inflection points at $x = \pm \sqrt{\frac{3}{2}}$.

Version B: The specified interval in problem 1 is $0.6 \le x \le 0.9$.

- 1. The absolute minimum is $f(e^{-1/3}) = 0.884594...$ and the absolute maximum if f(0.9) = 0.92606...
- 2. The rate is $\frac{32}{9\pi}$ cm/sec.
- 3. (a) $\frac{100}{641}$ radians per second (b) θ is changing fastest at $t = (\frac{625}{3})^{(1/4)}$ seconds after launch.
- 4. (a) Many answers are possible. One using the fact that $lne^3 = 3$ to yield an approximation of $3 + \frac{20-e^3}{e^3} = 2.99574136...$ (b) The *y*-coordinate is approximately 0.01.
- 5. The two slopes are $-\frac{4}{3}$ and 4.
- 6. (a) $x = \pm \frac{1}{\sqrt{2}}$ (b) f(x) is increasing only on $-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$. (c) f(x) is decreasing on $x \le -\frac{1}{\sqrt{2}}$ and $x \ge \frac{1}{\sqrt{2}}$. (d) f(x) has a local minimum at $x = -\frac{1}{\sqrt{2}}$ and a local maximum at $x = \frac{1}{\sqrt{2}}$. (e) f(x) has inflection points at $x = \pm \sqrt{\frac{3}{2}}$.