Math 124 F Autumn 2012
 Mid-Term Exam Number Two November 20, 2012
 Answers

There were two versions of the exam.
Version A: The specified interval in problem 1 is $\frac{1}{4} \leq x \leq \frac{3}{4}$.

1. The absolute minimum is $f\left(e^{-1 / 2}\right)=0.831985 \ldots$ and the absolute maximum if $f\left(\frac{1}{4}\right)=$ 0.917004043204....
2. The rate is $\frac{27}{4 \pi} \mathrm{~cm} / \mathrm{sec}$.
3. (a) $\frac{d \theta}{d t}=\frac{600}{10081}$ radians per second (b) θ is changing fastest at $t=\frac{10}{3^{1 / 4}}$ seconds after launch.
4. (a) Many answers are possible. One uses the fact that $\ln e^{4}=4$ to yield an approximation of $4+\frac{54-e^{4}}{e^{4}}=3.989044499991 \ldots$. (b) The y-coordinate is approximately -0.01 .
5. The two slopes are $-16 / 5$ and $16 / 3$.
6. (a) $x= \pm \frac{1}{\sqrt{2}}$ (b) $f(x)$ is increasing only on $-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$. (c) $f(x)$ is decreasing on $x \leq-\frac{1}{\sqrt{2}}$ and $x \geq \frac{1}{\sqrt{2}}$. (d) $f(x)$ has a local minimum at $x=-\frac{1}{\sqrt{2}}$ and a local maximum at $x=\frac{1}{\sqrt{2}}$. (e) $f(x)$ has inflection points at $x= \pm \sqrt{\frac{3}{2}}$.

Version B: The specified interval in problem 1 is $0.6 \leq x \leq 0.9$.

1. The absolute minimum is $f\left(e^{-1 / 3}\right)=0.884594 \ldots$ and the absolute maximum if $f(0.9)=$ 0.92606....
2. The rate is $\frac{32}{9 \pi} \mathrm{~cm} / \mathrm{sec}$.
3. (a) $\frac{100}{641}$ radians per second (b) θ is changing fastest at $t=\left(\frac{625}{3}\right)(1 / 4)$ seconds after launch.
4. (a) Many answers are possible. One using the fact that $\ln e^{3}=3$ to yield an approximation of $3+\frac{20-e^{3}}{e^{3}}=2.99574136 \ldots$ (b) The y-coordinate is approximately 0.01 .
5. The two slopes are $-\frac{4}{3}$ and 4 .
6. (a) $x= \pm \frac{1}{\sqrt{2}}$ (b) $f(x)$ is increasing only on $-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$. (c) $f(x)$ is decreasing on $x \leq-\frac{1}{\sqrt{2}}$ and $x \geq \frac{1}{\sqrt{2}}$. (d) $f(x)$ has a local minimum at $x=-\frac{1}{\sqrt{2}}$ and a local maximum at $x=\frac{1}{\sqrt{2}}$. (e) $f(x)$ has inflection points at $x= \pm \sqrt{\frac{3}{2}}$.
