Math 124 F Autumn 2012 Mid-Term Exam Number Two November 20, 2012

Name: \qquad Student ID no. : \qquad

Signature: \qquad Section: \qquad

1	10
2	10
3	10
4	10
5	10
6	10
Total	60

- Complete all questions.
- You may use a scientific calculator during this examination; graphing calculators and other electronic devices are not allowed and should be turned off for the duration of the exam.
- If you use trial-and-error, a guess-and-check method, or numerical approximation when an exact method is available, you will not receive full credit.
- You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 80 minutes to complete the exam.

1. Determine the absolute minimum and absolute maximum of the function

$$
f(x)=x^{\left(x^{2}\right)}
$$

on the interval $\frac{1}{4} \leq x \leq \frac{3}{4}$.
2. A conical paper cup is 6 cm across at the top and 9 cm deep. Water is pouring into the cup at the rate of $3 \mathrm{~cm}^{3}$ per second. How fast is the depth of the water in the cup rising when it is 2 cm deep?
3. You are watching a rocket launch. The rocket starts with a height of zero, will rise vertically, and will have height

$$
0.1 t^{2}
$$

meters t seconds after launch. From a point on the ground 10 meters from the rocket, you measure the angle from the ground up to the rocket. Call this angle θ.
(a) How fast is θ changing 3 seconds after launch?
(b) When is θ changing fastest?
4. (a) Use a linearization to approximate the value of $\ln 54$. Give a decimal value with at least 5 decimal places for your approximation.
(b) Use a linearization to approximate the y-coordinate of a point with x-coordinate equal to -0.02 on the curve

$$
y \cos x-x+\sin y=0
$$

5. Find the slope of the tangent lines to the curve

$$
\left(x^{2}+y\right)^{2}+x y=16
$$

at all points where the curve crosses the x-axis.
6. Let $f(x)=x e^{-x^{2}}$.
(a) Find all critical values of $f(x)$.
(b) Find all intervals on which $f(x)$ is increasing.
(c) Find all intervals on which $f(x)$ is decreasing.
(d) Give the x-coordinates of, and classify, all local extrema of $f(x)$.
(e) Give the x-coordinate of all inflection points of $f(x)$.

