Math 124 I - Winter 2007
Mid-Term Exam Number One January 30, 2007

Name: \qquad Section: \qquad

1	10	
2	16	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	76	

- Complete all questions.
- You may use a scientific calculator during this examination; graphing calculators and other electronic devices are not allowed and should be turned off for the duration of the exam.
- If you use trial-and-error, a guess-and-check method, or numerical approximation when an exact method is available, you will not receive full credit.
- You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 80 minutes to complete the exam.

1. A particle is moving in the plane so that its location at time t is given by the parametric equations

$$
x=4-2 t, y=5+t
$$

Determine the time when the particle is closest to the point $(3,2)$.
2. Evaluate each of the following limits. Show all work.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-7 x+10}$
(b) $\quad \lim _{x \rightarrow 0^{-}} \frac{|x|-x}{x}$
(c) $\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+7 x}-3 x\right)$
(d) $\quad \lim _{x \rightarrow 2^{+}} \frac{x(x+1)(x-4)}{(x-2)^{2}}$
3. Find the equation of the tangent line to the curve $y=x^{2}-3 x$ at the point $(1,-2)$.
4. The graph of $f(x)$ for $-5 \leq x \leq 5$ is shown below.

(a) What is $\lim _{x \rightarrow-4} f(x)$?
(b) Is $f(x)$ continuous at $x=-4$?
(c) What is $\lim _{x \rightarrow-2} f(x)$?
(d) What is $\lim _{x \rightarrow-1^{-}} f(x)$?
(e) Is $f(x)$ continuous at $x=3$?
(f) What is $\lim _{x \rightarrow 4^{+}} f(x)$?
5. For what values of c is the following function continuous at $x=1$?

$$
f(x)= \begin{cases}(x-c)^{2} & \text { if } x<1 \\ 13-c x & \text { if } x \geq 1\end{cases}
$$

6. Let $f(t)$ be defined as follows:

$$
f(t)=10 \sin \left(\frac{\pi t^{2}+t}{6 t^{2}+8 t+3}\right)+\frac{\sin (t-10)}{2 t-20}+85
$$

Find $\lim _{t \rightarrow \infty} f(t)$.
7. For a certain function $f(x)$,

$$
\frac{f(x+h)-f(x)}{h}=\frac{3 h x^{2}+\left(3 h^{2}-6 h\right) x+\left(h^{3}-3 h^{2}+2 h\right)}{h}
$$

Find the slope of the tangent line to $y=f(x)$ at $x=3$.

