Math 124 K - Autumn 2007
 Mid-Term Exam Number Two

November 20, 2007

Name: \qquad

Signature:

Student ID number: \qquad Section: \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	70	

- Complete all questions.
- You may use a scientific calculator during this examination; graphing calculators and other electronic devices are not allowed and should be turned off for the duration of the exam.
- If you use trial-and-error, a guess-and-check method, or numerical approximation when an exact method is available, you will not receive full credit.
- You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 80 minutes to complete the exam.

1. Find the derivative of each of the following functions. You need not simplify your results.
(a) $f(x)=x^{3} \cos \left(2 x+e^{x}\right)$
(b) $g(x)=\frac{x+x^{3}}{x-\sin x}$
2. For each of the following, find $\frac{d y}{d x}$. You need not simplify your results.
(a) $\quad y=\left(x^{3}+1\right)^{\left(x^{4}-1\right)}$
(b) $\frac{x}{y}+\sin y+\cos x=1$
3. Find the coordinates of the points on the curve defined by

$$
\frac{4}{3} x^{3}-x+y^{2}=1
$$

at which the tangent line is horizontal.
4. Use a linear approximation at $x=0.75$ to approximate the nearby solution of the equation

$$
\ln x+x^{2}=0
$$

(That is, apply Newton's method to this equation with a starting value of 0.75 , but just do one iteration.)
5. Find the points on the curve

$$
x^{3}+y^{3}=1
$$

which have a tangent line that passes through the point $(2,0)$.

6. A radioactive slice of pizza is changing shape. It is always a circular sector, but the radius r is increasing at 3 cm per hour and the angle θ is increasing at 1.5 radians per hour.

How fast is the area of the pizza slice changing when the radius is 8 cm and the angle is 2 radians?
7. Find the maximum and minimum values of the function

$$
f(x)=\frac{(\ln x)^{2}}{x^{3}}
$$

on the interval $\left[\frac{1}{2}, 3\right]$.

