Math 124 K - Autumn 2008
 Mid-Term Exam Number Two
 November 18, 2008
 Answers

1. (a) $\quad \frac{d y}{d x}=\frac{1}{\cos (\tan x)}(-\sin (\tan x)) \sec ^{2} x$
(b) $\frac{d y}{d x}=2 \sec 2 x \tan 2 x \tan 3 x+3 \sec 2 x \sec ^{2} 3 x$
(c) $\frac{d y}{d x}=\frac{-\frac{1}{y}-\frac{y}{x} x^{y}}{x^{y} \ln x-\frac{x}{y^{2}}}$
2. (a) the tangent lines are $x=0$ and $y=2(x-1)$ (b) $y \approx 2(1.1-1)=0.2$.
3. (a) local minimum at $x=0$, local maximum at $x=2$ (b) inflection points at $x=2 \pm \sqrt{2}$ (c) $y=0$ is a horizontal asymptote for f.
4. (a) 0 (b) 1 (c) -1
5. The area is increasing at the rate of 1.15714 square meters per second.
6. (a) $f^{\prime}(x)=\frac{1}{x}+e^{x}>0$ for all $x>0$, the domain of f. Hence, f is always increasing, and so can have at most one root. Also, $f(1)=e>0$, and $f(0.1)=-1.1197 \ldots<0$, so f has at least one root. Thus, f has exactly one root.
(b) $f^{\prime \prime}(x)=-\frac{1}{x^{2}}+e^{x} . f^{\prime \prime}$ is continuous on $x>0$, and $f^{\prime \prime}(1)=e-1>0$ while $f^{\prime \prime}(0.1)=$ $-98.89 . .<0$, so $f^{\prime \prime}$ does change sign, and so f has at least one inflection point.
(c) With Newton's method, one can find the root is approximately $0.2698741375 \ldots$...
