Math 124 K - Autumn 2009
 Mid-Term Exam Number Two

November 24, 2009
Answers/Solutions

1. (a) $\frac{d y}{d x}=\sec \left(x^{2}+\sin x\right) \tan \left(x^{2}+\sin x\right)(2 x+\cos x) \cos e^{x}+\sec \left(x^{2}+\sin x\right)\left(-\sin e^{x}\right)\left(e^{x}\right)$
(b) Using $\ln y=x^{x} \ln x$ and then $\ln \ln y=x \ln x+\ln \ln x$, you get

$$
\frac{d y}{d x}=x^{x^{x}} x^{x}\left(\ln x+(\ln x)^{2}+\frac{1}{x}\right)
$$

2. With an initial root approximation of $r_{0}=0.5$, you should get

$$
r_{1}=0.49481868, r_{2}=0.49486641, r_{3}=0.49486641
$$

so, to six correct digits, the root is 0.494866 .
3. The angle is changing at the rate of -0.00064 radians per second.
4. For the first family, we see that each curve satisfies the relationship

$$
2 x+2 k y \frac{d y}{d x}=0
$$

or

$$
\frac{d y}{d x}=-\frac{x}{k y} .
$$

Solving for k in the equation $x^{2}+k y^{2}=1$, we find

$$
k=\frac{1-x^{2}}{y^{2}}
$$

and so, for this family,

$$
\frac{d y}{d x}=-\frac{x y}{1-x^{2}}
$$

For the other family, we have

$$
2 x+2 y \frac{d y}{d x}=\frac{2}{x}
$$

which yields

$$
\frac{d y}{d x}=\frac{1-x^{2}}{x y}
$$

Noting that this is the negative reciprocal of the expression for the other family, we are done.
5. The function has two critical points in the interval $[-1,2]: 0$ and $\left(\frac{4}{3}\right)^{3 / 4} \approx 1.24080647$. Evaluating the function at these points and the endpoints, we find the absolute maximum occurs at $x=\left(\frac{4}{3}\right)^{3 / 4}$ where the function is about 0.7698 , and the absolute minimum occurs at $x=0$, where the function equals 0 .
6. (a) There is only one critical point: $x=e^{-1 / 2}$.
(b) The function is decreasing on $\left(0, e^{-1 / 2}\right)$ and increasing on $\left(e^{-1 / 2}, \infty\right)$.
(c) There is a local minimum at $x=e^{-1 / 2}$.
(d) There is one inflection point at $x=e^{-3 / 2}$.

