Math 124 A, B - Spring 2005

Mid-Term Exam Number Two

Answers

Version A - problem 6 involves the point $\left(0, \frac{1}{3}\right)$.

1. (a) $\frac{d y}{d x}=(2 x+3) e^{5-3 x}+\left(x^{2}+3 x\right) e^{5-3 x}(-3)$
(b) $\frac{d y}{d x}=\frac{\left(20 x^{4}-24 x\right)\left(6 x^{2}-9 x\right)-\left(4 x^{5}-12 x^{2}+3\right)(12 x-9)}{\left(6 x^{2}-9 x\right)^{2}}$
(c) $\frac{d y}{d x}=\frac{1}{2}\left(\frac{1}{2} x+\sin \left(x^{3}-x\right)\right)^{-1 / 2}\left(\frac{1}{2}+\cos \left(x^{3}-x\right)\left(3 x^{2}-1\right)\right)$
2. (a) $\frac{d y}{d x}=\frac{x^{\ln x}}{x-1}\left(\frac{2 \ln x}{x}-\frac{1}{x-1}\right)$ (Logarithmic differentiation works well here.)
(b) $\frac{d y}{d x}=-\frac{2 x^{3}}{3 y^{5}}$
(c) $\frac{d y}{d x}=\frac{-y-\cos x}{x-\cos y}$
3. $y=-4 x$.
4. The linear approximation is

$$
\ln x \approx \frac{1}{e^{2}}\left(x-e^{2}\right)+2
$$

Evaluating at $x=7$, we can say that

$$
\ln 7 \approx \frac{1}{e^{2}}\left(7-e^{2}\right)+2=1.9459101 \ldots
$$

5. (a) The distance to the balloon is changing at -0.83205 meters per second.
(b) The angle is changing at the rate of 0.09230769 radians per second.
6. Let $\left(a, a+\frac{1}{a}\right)$ be a point on the curve. If the tangent line at this point passes through $\left(0, \frac{1}{3}\right)$, then the slope of the tangent line can be expressed as

$$
1-\frac{1}{a^{2}}
$$

and as

$$
\frac{a+\frac{1}{a}-\frac{1}{3}}{a-0}
$$

These must be equal. Setting them equal and solving for a, we find one solution $a=6$. Hence, the point $\left(6,6 \frac{1}{6}\right)$ is the only point on the curve that has a tangent line that passes through $\left(0, \frac{1}{3}\right)$.

Version B - problem 6 involves the point $\left(0, \frac{2}{5}\right)$
1.
(a) $\frac{d y}{d x}=\frac{\left(8 x^{3}-15 x^{2}\right)\left(7 x^{2}+3 x\right)-\left(2 x^{4}-5 x^{3}+1\right)(14 x+3)}{\left(7 x^{2}+3 x\right)^{2}}$
(b) $\frac{d y}{d x}=\frac{1}{2}\left(\frac{1}{5} x+\cos \left(x^{4}+2 x\right)\right)^{-1 / 2}\left(\frac{1}{5}-\sin \left(x^{4}+2 x\right)\left(4 x^{3}+2\right)\right)$
(c) $\frac{d y}{d x}-\left(3 x^{2}+2\right) e^{6-2 x}+\left(x^{3}+2 x\right) e^{6-2 x}(-2)$
2. (a) $\frac{d y}{d x}=-\frac{4 x^{7}}{3 y^{5}}$
(b) $\frac{d y}{d x}=\frac{x^{\ln x}}{x-5}\left(\frac{2 \ln x}{x}-\frac{1}{x-5}\right)$ (Logarithmic differentiaion work well here)
(c) $\frac{d y}{d x}=\frac{-y-\cos x}{x-\sin y}$
3. $y=\frac{2}{7} x$
4. The linear approximation is

$$
\ln x \approx 2+\frac{1}{e^{2}}\left(x-e^{2}\right)
$$

so

$$
\ln 8 \approx 2+\frac{1}{e^{2}}\left(8-e^{2}\right)=2.0826822 \ldots
$$

5. (a) The distance to the balloon is changing at -0.83205 meters per second.
(b) The angle is changing at the rate of 0.09230769 radians per second.
6. Let $\left(a, a+\frac{1}{a}\right)$ be a point on the curve. If the tangent line at this point passes through $\left(0, \frac{2}{5}\right)$, then the slope of the tangent line can be expressed as

$$
1-\frac{1}{a^{2}}
$$

and as

$$
\frac{a+\frac{1}{a}-\frac{2}{5}}{a-0}
$$

These must be equal. Setting them equal and solving for a, we find one solution $a=5$. Hence, the point $\left(5,5 \frac{1}{5}\right)$ is the only point on the curve that has a tangent line that passes through ($0, \frac{2}{5}$).

