Math 124I - Winter 2003
Mid-Term Exam Number Two - Solutions
February 20, 2003

1. Find $\frac{d y}{d x}$. You need not simplify your result.
(a) $y=\left(x^{3}-2 x+\cos x\right)^{8}$

$$
\text { Solution: } \frac{d y}{d x}=8\left(x^{3}-2 x+\cos x\right)^{7}\left(3 x^{2}-2-\sin x\right)
$$

(b) $y=\frac{x^{3}+4}{x^{2}-x+1}$

$$
\text { Solution: } \quad \frac{d y}{d x}=\frac{\left(3 x^{2}\right)\left(x^{2}-x+1\right)-\left(x^{3}+4\right)(2 x-1)}{\left(x^{2}-x+1\right)^{2}}
$$

(c) $y=\sec \left(x+e^{x}\right)$

$$
\text { Solution: } \quad \frac{d y}{d x}=\left(\sec \left(x+e^{x}\right) \tan \left(x+e^{x}\right)\right)\left(1+e^{x}\right)
$$

(d) $y=x \sin 2 x$

$$
\text { Solution: } \quad \frac{d y}{d x}=(1) \sin 2 x+x(\cos 2 x)(2)=\sin 2 x+2 x \cos 2 x
$$

2. Find $\frac{d y}{d x}$. You need not simplify your result.
(a) $y=\ln \ln x$

Solution: $\quad \frac{d y}{d x}=\frac{1}{\ln x} \frac{1}{x}=\frac{1}{x \ln x}$
(b) $x+\sin y=y+\cos x$.

Solution: $\quad 1+(\cos y) y^{\prime}=y^{\prime}-\sin x$ so $y^{\prime}(\cos y-1)=-1-\sin x$ and hence

$$
\frac{d y}{d x}=y^{\prime}=\frac{-1-\sin x}{\cos y-1}
$$

3. Suppose $f(x)=(3-5 x)^{-2}$. Find $f^{\prime \prime \prime}(0)$.

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=(-2)(3-5 x)^{-3}(-5)=(-2)(-5)(3-5 x)^{-3} \\
& f^{\prime \prime}(x)=(-2)(-5)(-3)(3-5 x)^{-4}(-5)=(-2)(-5)(-3)(-5)(3-5 x)^{-4} \\
& f^{\prime \prime \prime}(x)=(-2)(-5)(-3)(-5)(-4)(3-5 x)^{-5}(-5) \\
& =(-2)(-5)(-3)(-5)(-4)(-5)(3-5 x)^{-5}=3000(3-5 x)^{-5}
\end{aligned}
$$

so

$$
f^{\prime \prime \prime}(0)=3000(3)^{-5}=\frac{3000}{243}=\frac{1000}{81}
$$

4. Find an equation of the tangent line to the curve

$$
y=\frac{\cos x}{1+e^{x}}
$$

at the point $\left(0, \frac{1}{2}\right)$.

Solution:

$$
y^{\prime}=\frac{(-\sin x)\left(1+e^{x}\right)-(\cos x)\left(e^{x}\right)}{\left(1+e^{x}\right)^{2}}
$$

so at $x=0, y^{\prime}=\frac{0-1}{2^{2}}=-\frac{1}{4}$. Hence the equation of the tangent line is

$$
y-\frac{1}{2}=-\frac{1}{4}(x-0)=-\frac{1}{4} x, \text { i.e., } y=-\frac{1}{4} x+\frac{1}{2} .
$$

5. Suppose $g(x)=\frac{x f(x)}{1+h(x)}$. Find $g^{\prime}(2)$ given that:

$$
f(2)=1, f^{\prime}(2)=0, h(2)=-2, \quad \text { and } h^{\prime}(2)=3
$$

Solution:

$$
g^{\prime}(x)=\frac{\left((1) f(x)+x f^{\prime}(x)\right)(1+h(x))-(x f(x)) h^{\prime}(x)}{(1+h(x))^{2}}
$$

so

$$
\begin{aligned}
& g^{\prime}(2)=\frac{\left(f(2)+2 f^{\prime}(2)\right)(1+h(2))-2 f(2) h^{\prime}(2)}{(1+h(2))^{2}} \\
& =\frac{(1+2 \cdot 0)(1+(-2))-2(1)(3)}{(1+(-2))^{2}}=-7
\end{aligned}
$$

6. Find a parabola with equation $y=a x^{2}+b x$ whose tangent line at $(2,14)$ is $y=17 x-20$.

Solution: If $(2,14)$ is on the curve then,

$$
14=a(2)^{2}+b(2)=4 a+2 b
$$

i.e, $2 a+b=7$. Also, since the line $y=17 x-20$ is tangent to the curve at $x=2$,

$$
17=y^{\prime}(2) .
$$

Since $y^{\prime}=2 a x+b, y^{\prime}(2)=4 a+b$, so

$$
4 a+b=17
$$

Combining this with $7=2 a+b$, you get

$$
2 a=10, \text { so } a=5
$$

Hence $b=7-2 a=-3$, and the parabola is $y=5 x^{2}-3 x$.
7. Find the equations of the tangent lines to $y=(\ln x)^{2}$ which passes through the origin. Solution: Suppose the tangent line is tangent to the curve at $x=a$. Then the slope of the line is

$$
\frac{(\ln a)^{2}}{a}
$$

since it passes through the origin. Also, $y^{\prime}=\frac{2 \ln x}{x}$, so the slope is also

$$
\frac{2 \ln a}{a} .
$$

Equating these two, we have

$$
\frac{(\ln a)^{2}}{a}=\frac{2 \ln a}{a}
$$

so

$$
\ln a=2 \text { or } \ln a=0
$$

and hence

$$
a=e^{2} \text { or } a=1
$$

The slope of the first line is $\frac{\left(\ln e^{2}\right)^{2}}{e^{2}}=\frac{4}{e^{2}}$, so the line has equation

$$
y-\left(\ln e^{2}\right)^{2}=\frac{4}{e^{2}}\left(x-e^{2}\right)
$$

which is

$$
y=\frac{4}{e^{2}}\left(x-e^{2}\right)+4
$$

The other line has slope zero, so its equation is

$$
y=0 .
$$

