Math 124I - Winter 2003 Mid-Term Exam Number Two February 20, 2003

1	20	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	80	

- Complete all questions.
- You may use a scientific (non-graphing) calculator during this examination. Other electronic devices are not allowed.
- You may use one hand-written 8.5 by 11 inch page of notes. You can use both sides of the note page.

.

- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. Find $\frac{dy}{dx}$. You need not simplify your result.

(a)
$$y = (x^3 - 2x + \cos x)^8$$

(b)
$$y = \frac{x^3 + 4}{x^2 - x + 1}$$

(c)
$$y = \sec(x + e^x)$$

(d) $y = x \sin 2x$

- 2. Find $\frac{dy}{dx}$. You need not simplify your result.
 - (a) $y = \ln \ln x$

(b) $x + \sin y = y + \cos x$.

3. Suppose $f(x) = (3 - 5x)^{-2}$. Find f'''(0).

4. Find the equations of the tangent lines to the curve

$$y = \frac{\cos x}{1 + e^x}$$

at the point $\left(0, \frac{1}{2}\right)$.

5. Suppose $g(x) = \frac{xf(x)}{1+h(x)}$. Find g'(2) given that: f(2) = 1, f'(2) = 0, h(2) = -2, and h'(2) = 3. 6. Find a parabola with equation $y = ax^2 + bx$ whose tangent line at (2, 14) is y = 17x - 20.

7. Find the equation of the tangent line to $y = (\ln x)^2$ which passes through the origin.