Name: \qquad Section: \qquad

1	20	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	80	

- Complete all questions.
- You may use a scientific (non-graphing) calculator during this examination. Other electronic devices are not allowed.
- You may use one hand-written 8.5 by 11 inch page of notes. You can use both sides of the note page.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. Find $\frac{d y}{d x}$. You need not simplify your result.
(a) $y=\left(x^{3}-2 x+\cos x\right)^{8}$
(b) $y=\frac{x^{3}+4}{x^{2}-x+1}$
(c) $y=\sec \left(x+e^{x}\right)$
(d) $y=x \sin 2 x$
2. Find $\frac{d y}{d x}$. You need not simplify your result.
(a) $y=\ln \ln x$
(b) $x+\sin y=y+\cos x$.
3. Suppose $f(x)=(3-5 x)^{-2}$. Find $f^{\prime \prime \prime}(0)$.
4. Find the equations of the tangent lines to the curve

$$
y=\frac{\cos x}{1+e^{x}}
$$

at the point $\left(0, \frac{1}{2}\right)$.
5. Suppose $g(x)=\frac{x f(x)}{1+h(x)}$. Find $g^{\prime}(2)$ given that:

$$
f(2)=1, f^{\prime}(2)=0, h(2)=-2, \text { and } h^{\prime}(2)=3
$$

6. Find a parabola with equation $y=a x^{2}+b x$ whose tangent line at $(2,14)$ is $y=17 x-20$.
7. Find the equation of the tangent line to $y=(\ln x)^{2}$ which passes through the origin.
