Math 124 C - Spring 2010
 Mid-Term Exam Number Two
 May 18, 2010

Name:
Student ID no. : \qquad

Signature: \qquad Section: \qquad

1	10	
2	10	
3	15	
4	10	
5	10	
6	20	
Total	75	

- Complete all questions.
- You may use a scientific calculator during this examination; graphing calculators and other electronic devices are not allowed and should be turned off for the duration of the exam.
- If you use trial-and-error, a guess-and-check method, or numerical approximation when an exact method is available, you will not receive full credit.
- You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 80 minutes to complete the exam.

1. Let $f(x)=\cos (x)$.
(a) Find the linearization of $f(x)$ at $a=\frac{\pi}{4}$.
(b) Use the linearization to give an approximation of $\cos \left(43^{\circ}\right)$.
2. Give the equation of the tangent line to the curve

$$
x^{3}+y+x y^{3}=65
$$

at the point $(2,3)$.
3. For each of the following, determine $\frac{d y}{d x}$. Please do not simplify your results.
(a) $y=x^{\cos x}$
(b) $\quad y=x \tan ^{-1}\left(\frac{1}{x}\right)$
(c) $\quad x^{y}=y^{x}$
4. The volume V of a cylinder with radius r and height h is given by

$$
V=\pi r^{2} h
$$

A cylinder is growing so that its radius is increasing at the rate of 2 cm per minute and its height is shrinking at the rate of 3 cm per minute.
How fast is the volume of the cylinder changing at the instant that its height is 80 cm and its radius is 50 cm ?
5. A man walks away from a street light mounted at the end of a 10 meter high pole. The man walks at the rate of $1 \mathrm{~meter} / \mathrm{sec}$. Due to radiation exposure, the man's height is increasing at the rate of 0.01 meter $/ \mathrm{sec}$. At the instant the man is 12 meters from the pole, the man is 2 meters tall.

How fast is the length of the man's shadow changing at that instant?
6. An object is moving in the plane with location at time t seconds given by the parametric equations

$$
x(t)=3 \cos (2 t), y(t)=5 \sin (2 t)
$$

(a) The object is moving around an ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with $a>0$ and $b>0$. Give the values of a and b.
(b) What is the horizontal velocity of the object at time $t=1$?
(c) What is the vertical velocity of the object at time $t=2$?
(d) Give a time t when the horizontal and vertical velocities of the object are equal.

