Math 125 D Autumn 2023 Mid-Term Exam Number One October 19, 2023
 Solutions

1. Evaluate the following indefinite integrals.
(a) $\int(\sqrt{x}+1)(\sqrt{x}+2) d x$

$$
\begin{aligned}
\int(\sqrt{x}+1)(\sqrt{x}+2) d x & =\int(x+3 \sqrt{x}+2) d x \\
& =\frac{1}{2} x^{2}+2 x^{3 / 2}+2 x+C
\end{aligned}
$$

(b) $\int \frac{x^{3}+3 x^{2}+1}{x^{2}} d x$

$$
\begin{aligned}
\int \frac{x^{3}+3 x^{2}+1}{x^{2}} d x & =\int\left(x+3+x^{-2}\right) d x \\
& =\frac{1}{2} x^{2}+3 x-\frac{1}{x}+C
\end{aligned}
$$

(c) $\int x^{5} \sqrt{x^{3}+1} d x$

Let $u=x^{3}+1$ so that $d u=3 x^{2} d x$.
Then $x^{5}=x^{3} \cdot x^{2}=(u-1) \frac{d u}{3}$.
Thus the integral becomes
$\frac{1}{3} \int(u-1) \sqrt{u} d u=\frac{1}{3} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u=\frac{2}{15} u^{5 / 2}-\frac{2}{9} u^{3 / 2}+C=\frac{2}{15}\left(x^{3}+1\right)^{5 / 2}-\frac{2}{9}\left(x^{3}+1\right)^{3 / 2}+C$.
2. Evaluate the following definite integrals.
(a) $\int_{0}^{6}\left|x^{2}-4\right| d x$.

$$
\begin{gathered}
x^{2}-4=0 \\
x^{2}=-1 \\
x= \pm 2
\end{gathered}
$$

By sketching $y=x^{2}-4$ and finding its root, we see that $x^{2}-4 \geq 0$ when $x \geq 2$ and $x^{2}-4<0$ when $-2 \leq x \leq 2$, so that

$$
\int_{0}^{6}\left|x^{2}-4\right| d x=\int_{0}^{2}\left(4-x^{2}\right) d x+\int_{2}^{6}\left(x^{2}-4\right) d x=\left.\left(4 x-\frac{1}{3} x^{3}\right)\right|_{0} ^{2}+\left.\left(\frac{1}{3} x^{2}-4 x\right)\right|_{2} ^{6}=\frac{176}{3}
$$

(b) $\int_{-4}^{4} f(t) d t$ where $f(t)=g^{\prime}(t)$ and $g(t)=t e^{2 t}$.

Since $f(t)=g^{\prime}(t), \int f(t) d t=g(t)+C$, and so

$$
\int_{-4}^{4} f(t) d t=g(4)-g(-4)=4 e^{8}-\left(-4 e^{-8}\right)=4 e^{8}+4 e^{-8}
$$

(c) $\int_{-1}^{1} \frac{e^{x}}{e^{x}+1} d x$

Let $u=e^{x}+1$. Then $d u=e^{x} d x$. Then

$$
\int \frac{e^{x}}{e^{x}+1} d x=\int \frac{d u}{u}=\ln |u|+C=\ln \left|e^{x}+1\right|+C .
$$

Hence,

$$
\begin{gathered}
\int_{-1}^{1} \frac{e^{x}}{e^{x}+1} d x=\left.\ln \left|e^{x}+1\right|\right|_{-1} ^{1} \\
=\ln |e+1|-\ln \left|e^{-1}+1\right|=\ln |e+1|-\ln \left|\frac{1+e}{e}\right|=\ln |e+1|-\ln |1+e|-\ln e=1 .
\end{gathered}
$$

3. Find the area of the region bounded by the curves $y=\frac{1}{x^{2}}, y=\sqrt{x}, x=3$ and the x-axis.

$$
\begin{gathered}
\frac{1}{x^{2}}=\sqrt{x} \\
\frac{1}{x^{4}}=x \\
1=x^{5} \\
x=1
\end{gathered}
$$

After drawing a good sketch, we find that the two curves intersect at $x=1$ with the region being bounded above by $y=\sqrt{x}$ and below by $y=0$ for $0 \leq x \leq 1$, and the region being bounded above by $y=\frac{1}{x^{2}}$ and below by $y=0$ for $1 \leq x \leq 3$.
From this, we conclude that the area is

$$
\begin{aligned}
\int_{0}^{1} \sqrt{x} d x+\int_{1}^{3} \frac{1}{x^{2}} d x & =\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{1}+\left.\left(-\frac{1}{x}\right)\right|_{1} ^{3} \\
& =\frac{4}{3}
\end{aligned}
$$

4. You find yourself on a distant planet, where the acceleration due to gravity is not the same as on Earth.
To measure the acceleration due to gravity, you perform an experiment.
You construct a 50 meter tall tower. From the top of the tower, you throw a rock downward.
The rock hits the ground exactly 6 seconds later.
The final 10 meters of its fall takes exactly 1 second.
What is the acceleration due to gravity on this distant planet?
We begin with the assumption that acceleration is constant; let g be the acceleration due to gravity on this planet.
Let $h(t)$ be height of the rock t seconds after it is thrown.
Then

$$
h^{\prime \prime}(t)=g
$$

so that

$$
h^{\prime}(t)=g t+C_{1}
$$

and

$$
h(t)=\frac{1}{2} g t^{2}+C_{1} t+C_{2}
$$

for some constants C_{1} and C_{2}, by integration.
We know three things:

- $h(0)=50$
- $h(6)=0$
- $h(5)=10$ since the rock travels 10 meters in the 1 second before it reaches the ground.

Hence,

$$
h(0)=50=0+0+C_{2}
$$

so $C_{2}=50$, and

$$
0=18 g+6 C_{1}+50 \text { and } 10=12.5 g+5 C_{1}+50
$$

Using these last two equations and solving for g we find

$$
g=-\frac{2}{3}
$$

so the acceleration due to gravity on this planet is $\frac{2}{3} \mathrm{~m} / \mathrm{s}^{2}$.
5. Let $g(x)=\cos x \int_{3 x}^{x^{3}} e^{t^{2}} d t$.

Find $g^{\prime}(x)$ (your answer may involve an integral or two).
By the Fundamental Theorem of Calculus, Part I, we know that if

$$
f(x)=\int_{a}^{x} h(t) d t
$$

then $f^{\prime}(x)=h(x)$. Hence, if

$$
j(u)=\int_{a}^{u} h(t) d t
$$

and u is a function of x, then

$$
\frac{d}{d u} j(u) d t=h(u)
$$

and, by the chain rule,

$$
\frac{d}{d x} j(u)=\frac{d}{d u} j(u) \cdot \frac{d u}{d x} .
$$

Thus,

$$
\begin{aligned}
\frac{d}{d x} \int_{3 x}^{x^{3}} e^{t^{2}} d t & =\frac{d}{d x} \int_{0}^{x^{3}} e^{t^{2}} d t-\frac{d}{d x} \int_{0}^{3 x} d t \\
& =e^{\left(x^{3}\right)^{2}} \frac{d}{d x} x^{3}-e^{(3 x)^{2}} \frac{d}{d x} 3 x \\
& =3 x^{2} e^{x^{6}}-3 e^{9 x^{2}}
\end{aligned}
$$

Hence, using the product rule, we find

$$
g^{\prime}(x)=-\sin x \int_{3 x}^{x^{3}} e^{t^{2}} d t+\cos x\left(3 x^{2} e^{x^{6}}-3 e^{9 x^{2}}\right)
$$

6. Let R be the region bounded by the x-axis, $y=2-\frac{1}{2} x$, and $y=x-3$.
(a) Using one or more integrals, express the volume of the solid of revolution that we get by revolving R about the x-axis. Do not evaluate your volume expression.

After making a good sketch of the situation, we find that the region is bounded below by the x-axis. We also find that the region is bounded above by $y=x-3$ for $3 \leq x \leq \frac{10}{3}$, and is bounded above by $y=2-\frac{1}{2} x$ for $\frac{10}{3} \leq x \leq 4$.
Hence, the volume is

$$
\text { volume }=\int_{3}^{10 / 3} \pi(x-3)^{2} d x+\int_{10 / 3}^{4} \pi\left(2-\frac{1}{2} x\right)^{2} d x
$$

(b) Using one or more integrals, express the volume of the solid of revolution that we get by revolving R about the y-axis. Do not evaluate your volume expression.

We find the y-coordinate of the point of intersection of the two lines is $y=\frac{1}{3}$.
Solving $y=x-3$ for x, we find $x=y+3$.
Solving $y=2-\frac{1}{2} x$ for x, we find $x=4-2 y$.
Hence, the volume is

$$
\text { volume }=\int_{0}^{1 / 3} \pi\left((4-2 y)^{2}-(y+3)^{2}\right) d y
$$

