Math 125 D Autumn 2023 Mid-Term Exam Number One October 19, 2023
 Solutions

1. Evaluate the following indefinite integrals.
(a) $\int(\sqrt{x}-3)(\sqrt{x}+1) d x$

$$
=\int(x-2 \sqrt{x}-3) d x=\frac{1}{2} x^{2}-\frac{4}{3} x^{3 / 2}-3 x+C .
$$

(b) $\int \frac{x^{3}+5 x^{2}+2}{x^{2}} d x$

$$
=\int\left(x+5+2 x^{-2}\right) d x=\frac{1}{2} x^{2}+5 x-2 x^{-1}+C
$$

(c) $\int x^{3} \sqrt{x^{2}+4} d x$

Let $u=x^{2}+4$ so $d u=2 x d x$ and $x d x=\frac{1}{2} d u$. Then $x^{2}=u-4$ and

$$
x^{3} d x=x^{2} \cdot x d x=(u-4) \cdot \frac{1}{2} d u=\frac{1}{2}(u-4) d u
$$

Hence, the integral equals

$$
\begin{aligned}
\frac{1}{2} \int(u-4) \sqrt{u} d u & =\frac{1}{2} \int\left(u^{3 / 2}-4 u^{1 / 2}\right) d u \\
& =\frac{1}{2}\left(\frac{2}{5} u^{5 / 2}-4 \cdot \frac{2}{3} u^{3 / 2}\right)+C \\
& =\frac{1}{5}\left(x^{2}+4\right)^{5 / 2}-\frac{4}{3}\left(x^{2}+4\right)^{3 / 2}+C .
\end{aligned}
$$

2. Evaluate the following definite integrals.
(a) $\int_{0}^{5}\left|x^{2}-9\right| d x$.

$$
\begin{array}{r}
x^{2}-9=0 \\
x^{2}=9 \\
x= \pm 3
\end{array}
$$

By making a good sketch and finding roots, we find that $x^{2}-9 \geq 0$ when $x \geq 3$ and $x^{2}-9<0$ when $0 \leq x \leq 3$, so that

$$
\begin{aligned}
\int_{0}^{5}\left|x^{2}-9\right| d x & =\int_{0}^{3}\left(9-x^{2}\right) d x+\int_{3}^{5}\left(x^{2}-9\right) d x \\
& =\left.\left(9 x-\frac{1}{3} x^{3}\right)\right|_{0} ^{3}+\left.\left(\frac{1}{3} x^{3}-9 x\right)\right|_{3} ^{5} \\
& =\frac{98}{3}
\end{aligned}
$$

(b) $\int_{-2}^{2} f(t) d t$ where $f(t)=g^{\prime}(t)$ and $g(t)=t e^{3 t}$.

Since $f(t)=g^{\prime}(t), \int f(t) d t=g(t)+C$.
Hence,

$$
\int_{-2}^{2} f(t) d t=\left.g(t)\right|_{-2} ^{2}=g(2)-g(-2)=2 e^{6}+2 e^{-6}
$$

(c) $\int_{0}^{4} \frac{e^{x}}{e^{x}+3} d x$

Let $u=e^{x}+3$. Then $d u=e^{x} d x$.
Hence,

$$
\int \frac{e^{x}}{e^{x}+3} d x=\int \frac{d u}{u}=\ln |u|=\ln \left|e^{x}+3\right|
$$

and

$$
\int_{0}^{4} \frac{e^{x}}{e^{x}+3} d x=\left.\ln \left|e^{x}+3\right|\right|_{0} ^{4}=\ln \left(e^{4}+3\right)-\ln \left(e^{0}+3\right)=\ln \left(e^{4}+3\right)-\ln 4
$$

3. Find the area of the region bounded by the curves $y=\frac{1}{x^{3}}, y=\sqrt{x}, x=4$ and the x-axis.

After drawing a good sketch, we find that the two curves intersect at $x=1$ with the region being bounded above by $y=\sqrt{x}$ and below by $y=0$ for $0 \leq x \leq 1$, and the region being bounded above by $y=\frac{1}{x^{3}}$ and below by $y=0$ for $1 \leq x \leq 4$.
Hence, the area of the region is

$$
\begin{aligned}
\text { area } & =\int_{0}^{1} \sqrt{x} d x+\int_{1}^{4} \frac{1}{x^{3}} d x \\
& =\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{1}+\left.\left(-\frac{1}{2}\right) x^{-2}\right|_{1} ^{4} \\
& =\frac{2}{3}+\left(-\frac{1}{32}+\frac{1}{2}\right) \\
& =\frac{109}{96}
\end{aligned}
$$

4. You find yourself on a distant planet, where the acceleration due to gravity is not the same as on Earth.
To measure the acceleration due to gravity, you perform an experiment.
You construct a 60 meter tall tower. From the top of the tower, you throw a rock downward.
The rock hits the ground exactly 8 seconds later.
The final 10 meters of its fall takes exactly 1 second.
What is the acceleration due to gravity on this distant planet?
We begin with the assumption that acceleration is constant; let g be the acceleration due to gravity on this planet.
Let $h(t)$ be height of the rock t seconds after it is thrown.
Then

$$
h^{\prime \prime}(t)=g
$$

so that

$$
h^{\prime}(t)=g t+C_{1}
$$

and

$$
h(t)=\frac{1}{2} g t^{2}+C_{1} t+C_{2}
$$

for some constants C_{1} and C_{2}, by integration.
We know three things:

- $h(0)=60$
- $h(8)=0$
- $h(7)=10$ since the rock travels 10 meters in the 1 second before it reaches the ground.

Hence,

$$
h(0)=60=0+0+C_{2}
$$

so $C_{2}=60$, and

$$
0=32 g+8 C_{1}+60 \text { and } 10=24.5 g+7 C_{1}+60
$$

Using these last two equations and solving for g we find

$$
g=-\frac{5}{7}
$$

so the acceleration due to gravity on this planet is $\frac{5}{7} \mathrm{~m} / \mathrm{s}^{2}$.
5. Let $g(x)=\sin x \int_{x^{2}}^{5 x} e^{t^{2}} d t$.

Find $g^{\prime}(x)$ (your answer may involve an integral or two).
By the Fundamental Theorem of Calculus, Part I, we know that if

$$
f(x)=\int_{a}^{x} h(t) d t
$$

then $f^{\prime}(x)=h(x)$. Hence, if

$$
j(u)=\int_{a}^{u} h(t) d t
$$

and u is a function of x, then

$$
\frac{d}{d u} j(u) d t=h(u)
$$

and, by the chain rule,

$$
\frac{d}{d x} j(u)=\frac{d}{d u} j(u) \cdot \frac{d u}{d x} .
$$

Thus,

$$
\begin{aligned}
\frac{d}{d x} \int_{x^{2}}^{5 x} e^{t^{2}} d x & =\frac{d}{d x} \int_{0}^{5 x} e^{t^{2}} d x-\frac{d}{d x} \int_{0}^{x^{2}} e^{t^{2}} d x \\
& =e^{(5 x)^{2}} \frac{d}{d x} 5 x-e^{x^{4}} \frac{d}{d x} x^{2} \\
& =5 e^{25 x^{2}}-2 x e^{x^{4}}
\end{aligned}
$$

Hence, using the product rule, we find

$$
g^{\prime}(x)=\cos x \int_{x^{2}}^{5 x} e^{t^{2}} d t+(\sin x)\left(5 e^{25 x^{2}}-2 x e^{x^{4}}\right)
$$

6. Let R be the region bounded by the x-axis, $y=3-\frac{1}{3} x$, and $y=x-4$.
(a) Using one or more integrals, express the volume of the solid of revolution that we get by revolving R about the x-axis. Do not evaluate your volume expression.

After making a good sketch of the situation, we find that the region is bounded below by the x-axis. We also find that the region is bounded above by $y=x-4$ for $4 \leq x \leq \frac{21}{4}$, and is bounded above by $y=3-\frac{1}{3} x$ for $\frac{21}{4} \leq x \leq 9$.
Hence, the volume is

$$
\text { volume }=\int_{4}^{21 / 4} \pi(x-4)^{2} d x+\int_{21 / 4}^{9} \pi\left(3-\frac{1}{3} x\right)^{2} d x
$$

(b) Using one or more integrals, express the volume of the solid of revolution that we get by revolving R about the y-axis. Do not evaluate your volume expression.

We find that the y-coordinate of the point of intersection of the two lines is $\frac{5}{4}$.
Also, if $y=3-\frac{1}{3} x$, then $x=9-3 y$, and if $y=x-4$, then $x=y+4$.
Hence, the volume is

$$
\text { volume }=\int_{0}^{5 / 4}\left(\pi(9-3 y)^{2}-\pi(y+4)^{2}\right) d y
$$

