Math 125U - Winter 2002 Mid-Term Exam February 6, 2002

Name _____

1	10	
2	10	
3	10	
4	10	
5	10	
6	20	
7	20	
8	10	
9	10	
10	20	
11	10	
Total	140	

- Complete all questions.
- Show all work for full credit.
- You have 120 minutes to complete the exam.

1. Is
$$\frac{x}{x^2+1}$$
 an antiderivative of $\frac{1-x^2}{(x^2+1)^2}$? Explain.

2. Suppose f''(x) = 4x + 1, f'(1) = 2, and f(0) = 1. Find f.

3. The velocity of a rocket is measured every half-second after lift-off. The data is in the following table.

t	0.0	0.5	1.0	1.5	2.0	2.5
v(t) (m/s)	0.0	1.3	2.7	5.3	12.0	22.3

Assuming the velocity was strictly increasing, find best possible lower and upper estimates for the height of the rocket (assuming an initial height of zero) after 2.5 seconds.

4. Suppose

$$\int_{2}^{10} f(x) \, dx = 12, \ \int_{2}^{6} f(x) \, dx = -4, \ \int_{5}^{10} f(x) \, dx = 1.$$

Find $\int_5^6 f(x) \, dx$.

5. Suppose
$$g(x) = \int_{3}^{\ln x} \frac{\ln t}{e^t} dt$$
. Find $g'(x)$.

6. Evaluate the integrals.

(a)
$$\int e^x \cos(2e^x) dx$$

(b)
$$\int (1+t)\sqrt{2+t} \, dt$$

7. Evaluate the integrals.

(a)
$$\int x^9 \sqrt{x^5 - 2} \, dx$$

(b)
$$\int \frac{1}{x\sqrt{\ln x}} dx$$

8. Find the area of the region bounded by y = 2x and $y = x^2 - 3x$.

9. Find the volume of the solid created by revolving the region bounded by

$$y = e^{x^2}$$
, $x = \sqrt{\ln(\pi + 1)}$, $x = 0$, and $y = 0$

about the y-axis.

- 10. Consider the region bounded by the curve $y = \ln x$ and the line which passes through (1,0) and (e,1).
 - (a) Set up (but do not evaluate) an integral representing the volume of the solid obtained by revolving this region about the *y*-axis.

(b) Set up (but do not evaluate) an integral representing the volume of the solid obtained by revolving this region about the x-axis.

11. Consider the solid created by revolving the region bounded by

$$y = x^3, y = 8$$
 and the $y - axis$

about the y-axis. Suppose a tank with this shape is filled with a heavy liquid weighing 90 lb/ft^3 . Calculate the work done in pumping all of the liquid to the top of the tank (assume linear units are feet).