Math 125U - Winter 2002
Mid-Term Exam
February 6, 2002

Name \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
6	20	
7	20	
8	10	
9	10	
10	20	
11	10	
Total	140	

- Complete all questions.
- Show all work for full credit.
- You have 120 minutes to complete the exam.

1. Is $\frac{x}{x^{2}+1}$ an antiderivative of $\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$? Explain.
2. Suppose $f^{\prime \prime}(x)=4 x+1, f^{\prime}(1)=2$, and $f(0)=1$. Find f.
3. The velocity of a rocket is measured every half-second after lift-off. The data is in the following table.

t	0.0	0.5	1.0	1.5	2.0	2.5
$v(t)(\mathrm{m} / \mathrm{s})$	0.0	1.3	2.7	5.3	12.0	22.3

Assuming the velocity was strictly increasing, find best possible lower and upper estimates for the height of the rocket (assuming an initial height of zero) after 2.5 seconds.
4. Suppose

$$
\int_{2}^{10} f(x) d x=12, \int_{2}^{6} f(x) d x=-4, \int_{5}^{10} f(x) d x=1
$$

Find $\int_{5}^{6} f(x) d x$.
5. Suppose $g(x)=\int_{3}^{\ln x} \frac{\ln t}{e^{t}} d t$. Find $g^{\prime}(x)$.
6. Evaluate the integrals.
(a) $\int e^{x} \cos \left(2 e^{x}\right) d x$
(b) $\int(1+t) \sqrt{2+t} d t$
7. Evaluate the integrals.
(a) $\int x^{9} \sqrt{x^{5}-2} d x$
(b) $\int \frac{1}{x \sqrt{\ln x}} d x$
8. Find the area of the region bounded by $y=2 x$ and $y=x^{2}-3 x$.
9. Find the volume of the solid created by revolving the region bounded by

$$
y=e^{x^{2}}, x=\sqrt{\ln (\pi+1)}, x=0, \quad \text { and } y=0
$$

about the y-axis.
10. Consider the region bounded by the curve $y=\ln x$ and the line which passes through $(1,0)$ and $(e, 1)$.
(a) Set up (but do not evaluate) an integral representing the volume of the solid obtained by revolving this region about the y-axis.
(b) Set up (but do not evaluate) an integral representing the volume of the solid obtained by revolving this region about the x-axis.
11. Consider the solid created by revolving the region bounded by

$$
y=x^{3}, y=8 \text { and the } y-\text { axis }
$$

about the y-axis. Suppose a tank with this shape is filled with a heavy liquid weighing $90 \mathrm{lb} / \mathrm{ft}^{3}$. Calculate the work done in pumping all of the liquid to the top of the tank (assume linear units are feet).

