Math 125 D Winter 2012 Mid-Term Exam Number One January 26, 2012 Answers

There were two versions of the exam.

Version A

In version A, the integrand in problem 1(a) had x^2 in the denominator.

1. (a)
$$\frac{1}{3}x^3 - \frac{1}{2}\cos x^2 + C$$
 (b) $\frac{1}{6}x^6 + x^4 + \frac{3}{2}x^2 + C$ (c) $\frac{1}{70}(2x^7 + 5)^{5/2} - \frac{10}{84}(2x^7 + 5)^{3/2} + C$
2. (a) 142.75 (b) $\frac{3}{2}(\ln 10 - \ln 16)$ (c) $\frac{5}{2}\ln 2 + \frac{\pi}{2}$
3. $g'(x) = e^x \ln(1 + e^{2x}) + 2x \ln(1 + x^4)$

4.
$$\frac{256}{3}$$

- 5. The rock hit the surface with a velocity of -14.91798 m/s.
- 6. (a) Several answers are possible. One is

$$\int_0^{a^2} \left(\frac{y - a^2}{2a} + a - \sqrt{y} \right) \, dy$$

(b) $a = 1200^{1/3} = 10.626585...$

Version B

In version B, the integrand in problem 1(a) had x^3 in the denominator.

1. (a)
$$x + \frac{1}{3}\sin x^3 + C$$
 (b) $\frac{1}{6}x^6 - x^4 - \frac{5}{2}x^2 + C$ (c) $\frac{1}{320}(4t^8 + 3)^{5/2} - \frac{1}{64}(4t^8 + 3)^{3/2} + C$
2. (a) 3596.25 (b) $\frac{5}{3}(\ln 7 - \ln 16)$ (c) $2\ln 2 + \frac{3}{2}\pi$
3. $g'(x) = e^x \ln(1 + e^{2x}) + 2x \ln(1 + x^4)$
4. 36
5. The rock hit the surface with a velocity of -16.35105 m/s.

- 6. (a) Several answers are possible. One is

$$\int_0^{a^2} \left(\frac{y - a^2}{2a} + a - \sqrt{y} \right) \, dy$$

(b) $a = 3852^{1/3} = 15.67576...$