Math 125G - Spring 2002
First Mid-Term Exam Solutions

1. Is $\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}$ an antiderivative of $x \ln x$? Explain.

The derivative of $\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}$ is $x \ln x$ (details left to the reader, must be shown for credit), so, yes, $\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}$ an antiderivative of $x \ln x$.
2. Suppose $f^{\prime \prime}(x)=2+e^{x}, f^{\prime}(0)=3$ and $f(0)=2$. Find $f(x)$.

Since $f^{\prime \prime}(x)=2+e^{x}, f^{\prime}(x)=\int\left(2+e^{x}\right) d x=2 x+e^{x}+C$. Using the fact that $f^{\prime}(0)=3$, we have $f^{\prime}(0)=0+e^{0}+C=1+C=3$, so $C=2$, i.e., $f^{\prime}(x)=2 x+e^{x}+2$. From this, we get $f(x)=\int\left(2 x+e^{x}+2\right) d x=x^{2}+e^{x}+2 x+D$, where D is an arbitrary constant. Using the fact that $f(0)=2$, we have $2=f(0)=0+1+0+D$, so $D=1$. Hence, $f(x)=1+2 x+x^{2}+e^{x}$.
3. Use the midpoint rule with $n=3$ to approximate the integral

$$
\int_{0}^{6} \ln (\sin x+3) d x
$$

Cutting the interval $[0,6]$ into three equal subintervals, we find these subintervals have length 2 and have centers 1,3 and 5 . Hence the midpoint rule approximation is

$$
2(\ln (\sin 1+3)+\ln (\sin 3+3)+\ln (\sin 5+3))=6.40782354841865609 \ldots
$$

Note that your answer should have at least 4 correct digits, so be sure to use as many digits throughout your calculations as you can (8 is sufficient).
4. Solve the following equation for m :

$$
\int_{0}^{1} f(x) d x-2 \int_{0}^{\frac{1}{2}} f(2 x) d x-\int_{1}^{0} f(x) d x=m \int_{0}^{1} f(x) d x
$$

The third integral is equal to $-\int_{0}^{1} f(x) d x$, so the left hand expression simplifies to

$$
2 \int_{0}^{1} f(x) d x-2 \int_{0}^{\frac{1}{2}} f(2 x) d x
$$

Letting $u=2 x$, so that $d u=2 d x$, we have

$$
\int_{0}^{\frac{1}{2}} f(2 x) d x=\frac{1}{2} \int_{0}^{1} f(u) d u=\frac{1}{2} \int_{0}^{1} f(x) d x
$$

Hence,

$$
2 \int_{0}^{1} f(x) d x-2 \int_{0}^{\frac{1}{2}} f(2 x) d x=2 \int_{0}^{1} f(x) d x-\int_{0}^{1} f(x) d x=\int_{0}^{1} f(x) d x
$$

and so $m=1$.
5. Find the derivative of each of the following functions.
(a) $g(x)=\int_{2}^{x^{2}} \sin \left(t^{2}+3 t\right) d t$

$$
g^{\prime}(x)=\sin \left(x^{4}+3 x^{2}\right) 2 x
$$

(b) $h(x)=\int_{2}^{3} \frac{\ln v}{\sin v} d v$
$h^{\prime}(x)=0$ (note that $h(x)$ is a constant).
6. Evaluate the following integrals:
(a) $\int \frac{x}{x^{2}+1} d x$

Letting $u=x^{2}+1$, so $d u=2 x d x$, we have

$$
\int \frac{x}{x^{2}+1} d x=\int \frac{\frac{1}{2} d u}{u}=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left|x^{2}+1\right|+C=\frac{1}{2} \ln \left(x^{2}+1\right)+C .
$$

(b) $\int_{-1}^{1}(2-x)^{6} d x$

Letting $u=2-x$, so $d u=-d x$, we have

$$
\int_{-1}^{1}(2-x)^{6} d x=-\int_{3}^{1} u^{6} d u=\int_{1}^{3} u^{6} d u=\left.\frac{u^{7}}{7}\right|_{1} ^{3}=\frac{3^{7}-1}{7}=\frac{2186}{7}
$$

7. Find the area of the region bounded by the curves $y=x^{2}-\frac{3}{2}$ and $y=\frac{1}{2}-x^{2}$.

We first have to find the intersection of the two curves. Setting them equal to each other we have $x^{2}-\frac{3}{2}=\frac{1}{2}-x^{2}$, i.e. $2 x^{2}=2$, i.e. $x^{2}=1$, so $x=-1$ and $x=1$. Noting
that at $x=0 \frac{1}{2}-x^{2}>x^{2}-\frac{3}{2}$, we find the areas between the curves by evaluating the integral

$$
\begin{aligned}
& \int_{-1}^{1}\left(\frac{1}{2}-x^{2}-\left(x^{2}-\frac{3}{2}\right)\right) d x=\int_{-1}^{1}\left(2-2 x^{2}\right) d x \\
& =\left.\left(2 x-\frac{2}{3} x^{3}\right)\right|_{-1} ^{1}=\left(2-\frac{2}{3}-\left(-2+\frac{2}{3}\right)\right)=4-\frac{4}{3}=\frac{8}{3} .
\end{aligned}
$$

8. Let $p>1$. Suppose the region in the first quadrant bounded by $y=x$ and $y=x^{p}$ is rotated about the x-axis to create a solid of revolution. If the volume of the solid is $\frac{\pi}{6}$, find p.
If $x=x^{p}$ then $x=0$ or $x=1$, and $x^{p} \leq x$ for $0 \leq x \leq 1$ so the volume of this solid of revolution is given by

$$
\int_{0}^{1}\left(\pi x^{2}-\pi\left(x^{p}\right)^{2}\right) d x=\frac{\pi}{3} x^{3}-\left.\frac{\pi}{2 p+1} x^{2 p+1}\right|_{0} ^{1}=\frac{\pi}{3}-\frac{\pi}{2 p+1} .
$$

For this to be equal to $\frac{\pi}{6}$, we must have

$$
\frac{\pi}{3}-\frac{\pi}{2 p+1}=\frac{\pi}{6}
$$

i.e.

$$
\frac{\pi}{6}=\frac{\pi}{2 p+1}
$$

so $2 p+1=6$, and hence $p=\frac{5}{2}$.

