Math 125G - Spring 2002

First Mid-Term Exam
April 23, 2002

Name \qquad Section \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

- Complete all questions.
- You may use a scientific calculator during this examination. Other calculating devices are not allowed.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 80 minutes to complete the exam.

1. Is $\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}$ an antiderivative of $x \ln x$? Explain.
2. Suppose $f^{\prime \prime}(x)=2+e^{x}, f^{\prime}(0)=3$ and $f(0)=2$. Find $f(x)$.
3. Use the midpoint rule with $n=3$ to approximate the integral

$$
\int_{0}^{6} \ln (\sin x+3) d x
$$

4. Solve the following equation for m :

$$
\int_{0}^{1} f(x) d x-2 \int_{0}^{\frac{1}{2}} f(2 x) d x-\int_{1}^{0} f(x) d x=m \int_{0}^{1} f(x) d x
$$

5. Find the derivative of each of the following functions.
(a) $g(x)=\int_{2}^{x^{2}} \sin \left(t^{2}+3 t\right) d t$
(b) $h(x)=\int_{2}^{3} \frac{\ln v}{\sin v} d v$
6. Evalate the following integrals:
(a) $\int \frac{x}{x^{2}+1} d x$
(b) $\int_{-1}^{1}(2-x)^{6} d x$
7. Find the area of the region bounded by the curves $y=x^{2}-\frac{3}{2}$ and $y=\frac{1}{2}-x^{2}$.
8. Let $p>1$. Suppose the region in the first quadrant bounded by $y=x$ and $y=x^{p}$ is rotated about the x-axis to create a solid of revolution. If the volume of the solid is $\frac{\pi}{6}$, find p.
