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1. Find the derivative of each of the following functions.

(a) f(x) =
∫ x2

−2
et3 dt.

Solution:

f ′(x) = e(x2)32x = 2xex6

.

(b) g(x) =
∫ sin x

ln x
sin(t2) dt.

Solution:

g′(x) = sin((sin x)2) cos x − sin((ln x)2)
1

x
.

2. Evaluate the following integrals.

(a)
∫

x
√

x + 2 dx

Solution: Let u = x + 2 so du = dx and x = u − 2. So
∫

x
√
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∫
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∫
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(b)
∫

dx

x(ln x)3

Solution: Let u = ln x, so du = 1
x
dx. Then

∫

dx

x(ln x)3
=
∫

du

u3
=
∫

u−3 du =
u−2

−2
+ C = −

1

2(ln x)2
+ C.

(c)
∫

sin x

1 + cos2 x
dx

Solution: Let u = cos x, so du = − sin x dx, i.e., −du = sin x dx. Then
∫

sin x

1 + cos2 x
dx =

∫

−du

1 + u2
= − tan−1 u + C = − tan−1(cos x) + C.

3. Consider the region R in the first quadrant bounded by y = x2, y = −
1
2
x+5 and the x-axis.

Find the volume of the solid of revolution created by revolving R about the x-axis.

Solution: The intersection of y = x2 with y = −
1
2
x + 5 in the first quadrant is (2, 4), and

the line y = −
1
2
x + 5 has x-intercept x = 10. So the volume of the solid asked for is

∫ 2

0
π(x2)2 dx +

∫ 10

2
π(−
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2
x + 5)2 dx = π
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= π
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5
+
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2

3
43
)

=
736

15
π.

4. Consider the region S bounded by y =
√

x, y = 1
2
x, x = 1 and x = 2. Find the volume of

the solid of revolution created by revolving S about the line x = 4.

Solution: The volume is

2π
∫ 2

1
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√
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2
x) dx = 2π
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5. Find the value of k > 0 so that the region bounded by y = xk and y = x1/k has area
3

4
.

Solution: Since y = xk and y = x1/k intersect at x = 0 and x = 1, the area bounded by
them is, assuming k > 1,

∫ 1

0

(

x1/k
− xk

)

dx =
x1+ 1

k
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=
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Setting this equal to 3
4

and solving we have:

k − 1

k + 1
=

3

4

k − 1 =
3

4
k +

3

4

1

4
k =

7

4

so k = 7. Because of the symmetry of the situation, k = 1
7

is a solution also.

6. Use the Midpoint Rule with n = 4 to estimate the area of the region bounded by y = sin
(

1

x

)

,

y = 0, x = 1 and x = 2.

Solution: Cutting the interval [1, 2] into 4 equal subintervals gives us the subintervals
[1, 1.25],[1.25, 1.5], [1.5, 1.75], and [1.75, 2]. The midpoints of these intervals are 1.125, 1.375,
1.625, and 1.875. So the Midpoint Rule approximation is

1
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= 0.74314129743833220140....



7. An accident occurred at the Tasty Foods company, and a lot of radioactive gas was released.
A tree nearby was severely affected, and it started growing at an unnatural rate. Research
has shown that trees affected by this kind of radiation grow at a rate (in meters/day) given
by

r(t) = at2

where t is the time (in days) since the exposure to the radiation, and a is a positive constant.

Ten days after the radiation leak the tree was 5 meters tall. After 20 days it was 10 meters
tall. When will the tree be 20 meters tall?

Solution: Using the fact that the integral of rate of change is total change, the height of the
tree is given by

h(t) = h(0) +
∫ t

0
r(x) dx = h(0) +

∫ t

0
ax2 dx = h(0) +

1

3
at3

where h(0) is the height of the tree when it was irradiated. We know h(10) = 5 and
h(20) = 10 so

5 = h(0) +
a

3
103

and

10 = h(0) +
a

3
203.

Subtracting, we get

5 =
1

3
a(203

− 103) =
7000

3
a

so a = 15
7000

= 3
1400

and

h(0) = 5 −
1000

1400
=

30

7
.

Thus

h(t) =
30

7
+

1

1400
t3.

Setting this equal to 20 and solving for t, we get

t =
(

1400(20 −
30

7
)
)

1

3

= 22000
1

3 ,

or about 28.02 days.


