Math 125A version 1 - Spring 2003

Mid-Term Exam Number One Solutions

April 24, 2003

1. Find the derivative of each of the following functions.
(a) $f(x)=\int_{-2}^{x^{2}} e^{t^{3}} d t$.

Solution:

$$
f^{\prime}(x)=e^{\left(x^{2}\right)^{3}} 2 x=2 x e^{x^{6}}
$$

(b) $g(x)=\int_{\ln x}^{\sin x} \sin \left(t^{2}\right) d t$.

Solution:

$$
g^{\prime}(x)=\sin \left((\sin x)^{2}\right) \cos x-\sin \left((\ln x)^{2}\right) \frac{1}{x}
$$

2. Evaluate the following integrals.
(a) $\int x \sqrt{x+2} d x$

Solution: Let $u=x+2$ so $d u=d x$ and $x=u-2$. So

$$
\begin{aligned}
& \int x \sqrt{x+2} d x=\int(u-2) \sqrt{u} d u=\int\left(u^{\frac{3}{2}}-2 u^{\frac{1}{2}}\right) d u \\
& =\frac{2}{5} u^{\frac{5}{2}}-\frac{4}{3} u^{\frac{3}{2}}+C=\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+C
\end{aligned}
$$

(b) $\int \frac{d x}{x(\ln x)^{3}}$

Solution: Let $u=\ln x$, so $d u=\frac{1}{x} d x$. Then

$$
\int \frac{d x}{x(\ln x)^{3}}=\int \frac{d u}{u^{3}}=\int u^{-3} d u=\frac{u^{-2}}{-2}+C=-\frac{1}{2(\ln x)^{2}}+C .
$$

(c) $\int \frac{\sin x}{1+\cos ^{2} x} d x$

Solution: Let $u=\cos x$, so $d u=-\sin x d x$, i.e., $-d u=\sin x d x$. Then

$$
\int \frac{\sin x}{1+\cos ^{2} x} d x=\int \frac{-d u}{1+u^{2}}=-\tan ^{-1} u+C=-\tan ^{-1}(\cos x)+C
$$

3. Consider the region R in the first quadrant bounded by $y=x^{2}, y=-\frac{1}{2} x+5$ and the x-axis. Find the volume of the solid of revolution created by revolving R about the x-axis.
Solution: The intersection of $y=x^{2}$ with $y=-\frac{1}{2} x+5$ in the first quadrant is $(2,4)$, and the line $y=-\frac{1}{2} x+5$ has x-intercept $x=10$. So the volume of the solid asked for is

$$
\int_{0}^{2} \pi\left(x^{2}\right)^{2} d x+\int_{2}^{10} \pi\left(-\frac{1}{2} x+5\right)^{2} d x=\left.\pi \frac{1}{5} x^{5}\right|_{0} ^{2}+\left.\pi\left(-\frac{2}{3}\left(-\frac{1}{2} x+5\right)^{3}\right)\right|_{2} ^{10}
$$

$$
=\pi \frac{2^{5}}{5}+\left(0+\pi \frac{2}{3} 4^{3}\right)=\frac{736}{15} \pi
$$

4. Consider the region S bounded by $y=\sqrt{x}, y=\frac{1}{2} x, x=1$ and $x=2$. Find the volume of the solid of revolution created by revolving S about the line $x=4$.
Solution: The volume is

$$
\begin{aligned}
& 2 \pi \int_{1}^{2}(4-x)\left(\sqrt{x}-\frac{1}{2} x\right) d x=2 \pi \int_{1}^{2}\left(4 x^{\frac{1}{2}}-2 x-x^{\frac{3}{2}}+\frac{1}{2} x^{2}\right) d x \\
& =2 \pi\left(\frac{8}{3} x^{\frac{3}{2}}-x^{2}-\frac{2}{5} x^{\frac{5}{2}}+\left.\frac{1}{6} x^{3}\right|_{1} ^{2}\right)=2 \pi\left(\frac{8}{3} 2^{\frac{3}{2}}-4-\frac{2}{5} 2^{\frac{5}{2}}+\frac{1}{6} 8-\left(\frac{8}{3}-1-\frac{2}{5}+\frac{1}{6}\right)\right) \\
& =2 \pi\left(\frac{8}{3} 2^{\frac{3}{2}}-\frac{2}{5} 2^{\frac{5}{2}}-\frac{41}{10}\right) .
\end{aligned}
$$

5. Find the value of $k>0$ so that the region bounded by $y=x^{k}$ and $y=x^{1 / k}$ has area $\frac{3}{4}$.

Solution: Since $y=x^{k}$ and $y=x^{1 / k}$ intersect at $x=0$ and $x=1$, the area bounded by them is, assuming $k>1$,

$$
\int_{0}^{1}\left(x^{1 / k}-x^{k}\right) d x=\frac{x^{1+\frac{1}{k}}}{1+\frac{1}{k}}-\left.\frac{x^{k+1}}{k+1}\right|_{0} ^{1}=\frac{1}{1+\frac{1}{k}}-\frac{1}{k+1}=\frac{k}{k+1}-\frac{1}{k+1}=\frac{k-1}{k+1}
$$

Setting this equal to $\frac{3}{4}$ and solving we have:

$$
\begin{aligned}
& \frac{k-1}{k+1}=\frac{3}{4} \\
& k-1=\frac{3}{4} k+\frac{3}{4} \\
& \frac{1}{4} k=\frac{7}{4}
\end{aligned}
$$

so $k=7$. Because of the symmetry of the situation, $k=\frac{1}{7}$ is a solution also.
6. Use the Midpoint Rule with $n=4$ to estimate the area of the region bounded by $y=\sin \left(\frac{1}{x}\right)$, $y=0, x=1$ and $x=2$.
Solution: Cutting the interval $[1,2]$ into 4 equal subintervals gives us the subintervals $[1,1.25],[1.25,1.5],[1.5,1.75]$, and $[1.75,2]$. The midpoints of these intervals are $1.125,1.375$, 1.625, and 1.875. So the Midpoint Rule approximation is

$$
\begin{aligned}
& \frac{1}{4}\left(\sin \left(\frac{1}{1.125}\right)+\sin \left(\frac{1}{1.375}\right)+\sin \left(\frac{1}{1.625}\right)+\sin \left(\frac{1}{1.825}\right)\right) \\
& =0.74314129743833220140 \ldots
\end{aligned}
$$

7. An accident occurred at the Tasty Foods company, and a lot of radioactive gas was released. A tree nearby was severely affected, and it started growing at an unnatural rate. Research has shown that trees affected by this kind of radiation grow at a rate (in meters/day) given by

$$
r(t)=a t^{2}
$$

where t is the time (in days) since the exposure to the radiation, and a is a positive constant. Ten days after the radiation leak the tree was 5 meters tall. After 20 days it was 10 meters tall. When will the tree be 20 meters tall?
Solution: Using the fact that the integral of rate of change is total change, the height of the tree is given by

$$
h(t)=h(0)+\int_{0}^{t} r(x) d x=h(0)+\int_{0}^{t} a x^{2} d x=h(0)+\frac{1}{3} a t^{3}
$$

where $h(0)$ is the height of the tree when it was irradiated. We know $h(10)=5$ and $h(20)=10$ so

$$
5=h(0)+\frac{a}{3} 10^{3}
$$

and

$$
10=h(0)+\frac{a}{3} 20^{3} .
$$

Subtracting, we get

$$
5=\frac{1}{3} a\left(20^{3}-10^{3}\right)=\frac{7000}{3} a
$$

so $a=\frac{15}{7000}=\frac{3}{1400}$ and

$$
h(0)=5-\frac{1000}{1400}=\frac{30}{7} .
$$

Thus

$$
h(t)=\frac{30}{7}+\frac{1}{1400} t^{3} .
$$

Setting this equal to 20 and solving for t, we get

$$
t=\left(1400\left(20-\frac{30}{7}\right)\right)^{\frac{1}{3}}=22000^{\frac{1}{3}}
$$

or about 28.02 days.

