Math 125A - Spring 2003

Mid-Term Exam Number One
April 24, 2003

Name: \qquad Section: \qquad

1	10	
2	15	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	75	

- This exam consists of 7 problems. Be sure that you complete all 7 problems.
- You may use a scientific (non-graphing) calculator during this examination. Other electronic devices are not allowed.
- You may use one hand-written 8.5 by 11 inch page of notes. You can use both sides of the note page.
- Show all work for full credit.
- Unless the problem specifies an approximation, an exact answer should be given.
- Mechanisms are in place to render cheating detectable and ineffective.
- You have 80 minutes to complete the exam.

1. Find the derivative of each of the following functions.
(a) $f(x)=\int_{-2}^{x^{2}} e^{t^{3}} d t$.
(b) $g(x)=\int_{\ln x}^{\sin x} \sin \left(t^{2}\right) d t$.
2. Evaluate the following integrals.
(a) $\int x \sqrt{x+2} d x$
(b) $\int \frac{d x}{x(\ln x)^{3}}$
(c) $\int \frac{\sin x}{1+\cos ^{2} x} d x$
3. Consider the region R in the first quadrant bounded by $y=x^{2}, y=-\frac{1}{2} x+5$ and the x-axis. Find the volume of the solid of revolution created by revolving R about the x-axis.
4. Consider the region S bounded by $y=\sqrt{x}, y=\frac{1}{2} x, x=1$ and $x=2$. Find the volume of the solid of revolution created by revolving S about the line $x=4$.
5. Find the value of $k>0$ so that the region bounded by $y=x^{k}$ and $y=x^{1 / k}$ has area $\frac{3}{4}$.
6. Use the Midpoint Rule with $n=4$ to estimate the area of the region bounded by $y=\sin \left(\frac{1}{x}\right)$, $y=0, x=1$ and $x=2$.
7. An accident occurred at the Tasty Foods company, and a lot of radioactive gas was released. A tree nearby was severely affected, and it started growing at an unnatural rate. Research has shown that trees affected by this kind of radiation grow at a rate (in meters/day) given by

$$
r(t)=a t^{2}
$$

where t is the time (in days) since the exposure to the radiation, and a is a positive constant. Ten days after the radiation leak the tree was 5 meters tall. After 20 days it was 10 meters tall. When will the tree be 20 meters tall?

