Math 125 D and H - Spring 2004
Mid-Term Exam Number One
Solutions
April 22,2004

1. Evaluate each of the following indefinite integrals.
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2. Alice falls from a plane at an altitude of 3000 meters. She falls in such a way that she is accelerating
at a rate of

—9.8 + 0.3t m/s?
t seconds after the start of her fall. Assume her initial velocity is zero.

(a) What is her velocity after 6 seconds?
Her velocity will be the integral of her rate of acceleration fromt¢ = 0tot = 6:

v = /6(—9.8 +0.3t) dt = (—9.8t + 0.15t%)|$ = —9.8(6) + 0.15(6%) = —53.4 m/s.
0
(b) How far off the ground will she be after falling for 6 seconds?

Her velocity after ¢ seconds is given by
v =—9.8t+ 0.15t°

Integrating this, we find her position is
h=—4.9t> + 0.05t° + C

Since h = 3000 when ¢t = 0, C = 3000, so her height after ¢ seconds is
h = —4.9t* + 0.05t> + 3000

and so after 6 seconds, she’ll be
h = —4.9(6%) + 0.05(6%) + 3000 = 2834.4 meters off the ground.

3. The graph of f(z) is given below. Let A(z) = / f(t)dt.
0

Evaluate each of the following:



(a) A(2) = (2)(2) = 4

(b) A'3) =1
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4. Let R be the region in the first quadrant bounded by y = 2 — 22, y = 22, and the y-axis.

(a) Find the volume of the solid of revolution created by revolving R about the y-axis.
The curves y = 22 and y = 2 — 22 intersect in the first quadrant at the point (1, 1).
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(b) Find the volume of the solid of revolution created by revolving R about the z-axis.
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5. Let R be the region bounded by y = z, y = In(2® + 1), and = 3. The curves are shown in the
figure.

Set up an integral that gives the volume of the solid of revolution created by revolving R about
the line z = 5. DO NOT EVALUATE THE INTEGRAL.

The method of cylindrical shells is the easiest way to go on this problem:
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6. Here is a graph of y = €¢°°*“ on the interval 0 < 2 < 3:




Use the midpoint rule with n=3 to approximate the value of the following integral:
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Note that you must have your calculator in radian mode in order to correctly calculate cos(0.5) =
0.87758256... etc.

. Find the value of m so that the region bounded by y = \/z and y = ma has an area of 4.
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The curves y = \/z and y = max intersect at + = —;. The area of the region bounded by these
m
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So, if the area equals 4, then we have
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from which we find

m = = = 0.3466806372...




