Math 125 D and H - Spring 2004
 Mid-Term Exam Number One
 Solutions
 April 22, 2004

1. Evaluate each of the following indefinite integrals.
(a) $\int \frac{x^{2}}{x^{3}+5} d x=\frac{1}{3} \ln \left|x^{3}+5\right|+C$
(b) $\int\left(x^{2}+3\right)^{2} d x=\int\left(x^{4}+6 x^{2}+9\right) d x=\frac{1}{5} x^{5}+2 x^{3}+9 x+C$
(c) $\int x^{3} \sqrt{x^{2}+4} d x=\frac{1}{5}\left(x^{2}+4\right)^{5 / 2}-\frac{4}{3}\left(x^{2}+4\right)^{3 / 2}+C$
(d) $\int \frac{1}{x \ln x} d x=\ln |\ln x|+C$
2. Alice falls from a plane at an altitude of 3000 meters. She falls in such a way that she is accelerating at a rate of

$$
-9.8+0.3 t \mathrm{~m} / \mathrm{s}^{2}
$$

t seconds after the start of her fall. Assume her initial velocity is zero.
(a) What is her velocity after 6 seconds?

Her velocity will be the integral of her rate of acceleration from $t=0$ to $t=6$:

$$
v=\int_{0}^{6}(-9.8+0.3 t) d t=\left.\left(-9.8 t+0.15 t^{2}\right)\right|_{0} ^{6}=-9.8(6)+0.15\left(6^{2}\right)=-53.4 \mathrm{~m} / \mathrm{s}
$$

(b) How far off the ground will she be after falling for 6 seconds?

Her velocity after t seconds is given by

$$
v=-9.8 t+0.15 t^{2}
$$

Integrating this, we find her position is

$$
h=-4.9 t^{2}+0.05 t^{3}+C
$$

Since $h=3000$ when $t=0, C=3000$, so her height after t seconds is

$$
h=-4.9 t^{2}+0.05 t^{3}+3000
$$

and so after 6 seconds, she'll be

$$
h=-4.9\left(6^{2}\right)+0.05\left(6^{3}\right)+3000=2834.4 \text { meters off the ground. }
$$

3. The graph of $f(x)$ is given below. Let $A(x)=\int_{0}^{x} f(t) d t$.

Evaluate each of the following:
(a) $A(2)=(2)(2)=4$
(b) $A^{\prime}(3)=1$
(c) $A(6)=(2)(2)+2-\frac{1}{2}-1=\frac{9}{2}$
(d) $A(4)-A(3)=\frac{1}{2}$
4. Let R be the region in the first quadrant bounded by $y=2-x^{2}, y=x^{2}$, and the y-axis.
(a) Find the volume of the solid of revolution created by revolving R about the y-axis. The curves $y=x^{2}$ and $y=2-x^{2}$ intersect in the first quadrant at the point $(1,1)$.

$$
V=\int_{0}^{1} 2 \pi x\left(2-x^{2}-x^{2}\right) d x=\int_{0}^{1} 2 \pi\left(2 x-2 x^{3}\right) d x=\left.2 \pi\left(x^{2}-\frac{1}{2} x^{4}\right)\right|_{0} ^{1}=2 \pi\left(1-\frac{1}{2}\right)=\pi
$$

(b) Find the volume of the solid of revolution created by revolving R about the x-axis.

$$
\begin{aligned}
& V=\int_{0}^{1}\left(\pi\left(2-x^{2}\right)^{2}-\pi\left(x^{2}\right)^{2}\right) d x=\pi \int_{0}^{1}\left(4-4 x^{2}+x^{4}-x^{4}\right) d x \\
& =\pi \int_{0}^{1}\left(4-4 x^{2}\right) d x=\left.\pi\left(4 x-\frac{4}{3} x^{3}\right)\right|_{0} ^{1}=\pi\left(4-\frac{4}{3}\right)=\frac{8}{3} \pi
\end{aligned}
$$

5. Let R be the region bounded by $y=x, y=\ln \left(x^{2}+1\right)$, and $x=3$. The curves are shown in the figure.

Set up an integral that gives the volume of the solid of revolution created by revolving R about the line $x=5$. DO NOT EVALUATE THE INTEGRAL.
The method of cylindrical shells is the easiest way to go on this problem:

$$
V=\int_{0}^{3} 2 \pi(5-x)\left(x-\ln \left(x^{2}+1\right)\right) d x
$$

6. Here is a graph of $y=e^{\cos x}$ on the interval $0 \leq x \leq 3$:

Use the midpoint rule with $\mathrm{n}=3$ to approximate the value of the following integral:

$$
\begin{aligned}
& \int_{0}^{3} e^{\cos x} d x \\
& \int_{0}^{3} e^{\cos x} d x \approx(1) e^{\cos (0.5)}+(1) e^{\cos (1.5)}+(1) e^{\cos (2.5)}=3.927193071 \ldots
\end{aligned}
$$

Note that you must have your calculator in radian mode in order to correctly calculate $\cos (0.5)=$ $0.87758256 \ldots$ etc.
7. Find the value of m so that the region bounded by $y=\sqrt{x}$ and $y=m x$ has an area of 4 .

The curves $y=\sqrt{x}$ and $y=m x$ intersect at $x=\frac{1}{m^{2}}$. The area of the region bounded by these curves is

$$
\int_{0}^{1 / m^{2}}(\sqrt{x}-m x) d x=\left.\left(\frac{2}{3} x^{3 / 2}-\frac{1}{2} m x^{2}\right)\right|_{0} ^{1 / m^{2}}=\frac{1}{6 m^{3}}
$$

So, if the area equals 4 , then we have

$$
4=\frac{1}{6 m^{3}}
$$

from which we find

$$
m=\frac{1}{\sqrt[3]{24}}=\frac{1}{2 \sqrt[3]{3}}=0.3466806372 \ldots
$$

