Name: $\qquad$ Section: $\qquad$

| 1 | 20 |  |
| :---: | :---: | :--- |
| 2 | 10 |  |
| 3 | 8 |  |
| 4 | 10 |  |
| 5 | 10 |  |
| 6 | 10 |  |
| 7 | 10 |  |
| Total | 78 |  |

- Complete all questions.
- You may use a scientific calculator during this examination. Graphing calculators, and other calculating devices are not allowed.
- If you use a trial-and-error or guess-and-check method, or read a numerical solution from a graph on your calculator when an algebraic method is available, you will not receive full credit.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 80 minutes to complete the exam.

1. Evaluate each of the following indefinite integrals.
(a) $\int \frac{x^{2}}{x^{3}+5} d x$
(b) $\int\left(x^{2}+3\right)^{2} d x$
(c) $\int x^{3} \sqrt{x^{2}+4} d x$
(d) $\int \frac{1}{x \ln x} d x$
2. Alice falls from a plane at an altitude of 3000 meters. She falls in such a way that she is accelerating at a rate of

$$
-9.8+0.3 t \mathrm{~m} / \mathrm{s}^{2}
$$

$t$ seconds after the start of her fall. Assume her initial velocity is zero.
(a) What is her velocity after 6 seconds?
(b) How far off the ground will she be after falling for 6 seconds?
3. The graph of $f(x)$ is given below. Let $A(x)=\int_{0}^{x} f(t) d t$.


Evaluate each of the following:
(a) $A(2)$
(b) $A^{\prime}(3)$
(c) $A(6)$
(d) $A(4)-A(3)$
4. Let $R$ be the region in the first quadrant bounded by $y=2-x^{2}, y=x^{2}$, and the $y$-axis.
(a) Find the volume of the solid of revolution created by revolving $R$ about the $y$-axis.
(b) Find the volume of the solid of revolution created by revolving $R$ about the $x$-axis.
5. Let $R$ be the region bounded by $y=x, y=\ln \left(x^{2}+1\right)$, and $x=3$. The curves are shown in the figure.


Determine the volume of the solid of revolution created by revolving $R$ about the line $x=5$.
6. Here is a graph of $y=e^{\cos x}$ on the interval $0 \leq x \leq 3$ :


Use the midpoint rule with $\mathrm{n}=3$ to approximate the value of the following integral:

$$
\int_{0}^{3} e^{\cos x} d x
$$

7. Find the value of $m$ so that the region bounded by $y=\sqrt{x}$ and $y=m x$ has an area of 4 .

