Math 125 G - Winter 2009
Mid-Term Exam Number One
January 29, 2009

Name: \qquad
Student ID number: \qquad Section: \qquad

1	20	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	70	

- Complete all questions.
- You may use a scientific calculator during this examination; graphing calculators and other electronic devices are not allowed and should be turned off for the duration of the exam.
- If you use trial-and-error, a guess-and-check method, or numerical approximation when an exact method is available, you will not receive full credit.
- You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 80 minutes to complete the exam.

1. Evaluate the following integrals.
(a) $\int \frac{\ln x}{x} d x$
(b) $\int_{0}^{3} \sqrt{36-4 x^{2}} d x$
(c) $\int x^{9} \sqrt{x^{5}+3} d x$
(d) $\int \frac{x+4}{x^{2}+1} d x$
2. Consider the region bounded by the curves $y=\sqrt{x}$ and $y=\frac{1}{2} x$. Find the volume of the solid of revolution created by revolving this region about the x-axis.
3. Consider the region in the first quadrant bounded by the y-axis and the curves $y=2 x$ and $y=\sqrt{1-5 x^{2}}$. Find the volume of the solid of revolution created by revolving this region about the y-axis.
4. Give upper and lower bounds for the sum

$$
\sum_{i=1}^{n} \frac{1}{i^{2}+1}
$$

5. For $m>0$, consider the region bounded by the curve $y=x^{2}$ and the lines $y=m x$ and $y=2 m x$. Find m so that this region has an area of 252 .
6. Suppose a region in the plane is bounded by $y=f(x), y=g(x), x=a$ and $x=b$, with $0<g(x)<f(x)$ and $a<b$. Show that the volume of the solid of revolution created by revolving this region about the line $y=-k$ (for $k>0$) is a linear function of k (i.e., a function of the form $A k+B$).
