Math 125 H - Winter 2010
Mid-Term Exam Number One
January 29, 2010 Answers

1. (a) $\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{\sqrt{3}}{2} x\right)+C$
(b) $\frac{1}{70}\left(x^{5}+1\right)^{14}-\frac{1}{65}\left(x^{5}+1\right)^{1} 3+C$
2. (a) $2 \pi+4$ (b) $\frac{1}{2} e^{4}-\frac{1}{2} e^{2}-1$
3. There are many ways to answer this problem. If you cut the interval $[0,1]$ into three equal subintervals, and bound the area under the curve on each subinterval and sum the bounds, you get

$$
1.225714<\int_{0}^{1} e^{x^{2}} d x<1.79847
$$

and since $1.79847-1.225714<\frac{2}{3}$, we're done.
4. $c=\left(\frac{9}{4}\right)^{2 / 3}$
5. The volume is $\frac{\pi}{6}$.
6. The volume is $\frac{224}{3} \pi$.

