Math 125 H - Winter 2010 Mid-Term Exam Number One January 29, 2010

Name: _____

Student ID number: _____

Section:

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

- Complete all questions.
- You may use a scientific calculator during this examination; graphing calculators and other electronic devices are not allowed and should be turned off for the duration of the exam.
- If you use trial-and-error, a guess-and-check method, or numerical approximation when an exact method is available, you will not receive full credit.
- You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.
- Show all work for full credit.

•

• You have 80 minutes to complete the exam.

1. Evaluate the following integrals.

(a)
$$\int \frac{dx}{3x^2 + 4}$$

(b)
$$\int x^9 (x^5 + 1)^{12} dx$$

2. Evaluate the following integrals.

(a)
$$\int_0^{\pi} (1 + \sin x) (2 + \cos x) dx$$

(b)
$$\int_{e}^{e^2} \frac{(x+1)(x-1)}{x} dx$$

3. Give upper and lower bounds for the integral

$$\int_0^1 e^{x^2} \, dx$$

which differ by less than $\frac{2}{3}$.

4. Let c > 0. The area bounded by $y = c - x^2$ and the *x*-axis equals 3. Find *c*.

5. Consider the region bounded by $y = x^2 - x$ and the *x*-axis. Find the volume of the solid of revolution created by revolving this region about the *y*-axis.

6. Consider the region bounded by $y = 5 - \frac{1}{4}x^2$ and $y = x^2$. Find the volume of the solid of revolution created by revolving this region about the *x*-axis.