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1. Consider the region in the first quadrant bounded by y = x%, x =0 and y = 8. Suppose this
region is revolved about the y-axis to create a three-dimensional solid. Suppose we have a tank
with the shape of that solid, oriented so that the y-axis is perpendicular to the ground, the
origin is at the bottom of the tank, and units are in meters (so the tank is 8 meters tall). If
the tank is filled with a liquid with density 2300 kg/m?, how much work is required to pump
all of the liquid to the top of the tank?

Solution:

The integral we need to evaluate is
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2. For what k > 0 do y = 2% and y = 10 — 2% have the same average value on the interval [0, k] ?

Solution: The average value of z2 on the interval [0, k] is
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The average value of 10 — z? on the interval [0, k] is
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If the average values are equal, then
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and if we solve that equation we find a single positive solution, k = v/15.



3. Use Simpson’s Rule with n = 6 to approximate the integral:

51
/ —dx
2 Inx
Maintain at least 4 digits of precision at all times.
Solution: Simpson’s Rule applied to this integral gives us the approximation
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4. Evaluate each of the following integrals:
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Solution: Using integration by parts, with © = Inx and dv = 2° dx, we have
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Solution:
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Let u = cosz so
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5. Evaluate each of the following integrals:
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Solution: Since 2% + 8z + 20 = (x + 4)? + 4, we can use the substitution x + 4 = 2tan 6
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6. Evaluate the following integrals.
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Solution: Since z2 — 8z + 18 = (z — 4)? + 2, we can use the substitution z —4 = v/2tan6:
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Solution: Since
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7. Evaluate the following integrals.

(a) /51736:02 dz

Solution: Let u = 2, so that du = 2z dx and we have
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Applying integration by parts, with y = u, dz = e du, we have
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Solution: Using the substitution x = sec ), we have
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If we let u = sin @, we get
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