Math 125 A, F, G - Spring 2003 Mid-Term Exam Number Two Solutions Version 1 May 15, 2003

1. Consider the region in the first quadrant bounded by $y = x^{\frac{3}{2}}$, x = 0 and y = 8. Suppose this region is revolved about the y-axis to create a three-dimensional solid. Suppose we have a tank with the shape of that solid, oriented so that the y-axis is perpendicular to the ground, the origin is at the bottom of the tank, and units are in meters (so the tank is 8 meters tall). If the tank is filled with a liquid with density 2300 kg/m³, how much work is required to pump all of the liquid to the top of the tank?

Solution:

The integral we need to evaluate is

$$\int_0^8 (8-y)\pi \left(y^{\frac{2}{3}}\right)^2 (2300)(g) \, dy.$$

This is

$$2300\pi g \int_0^8 (8-y)y^{\frac{4}{3}} dy = 2300\pi g \int_0^8 \left(8y^{\frac{4}{3}} - y^{\frac{7}{3}}\right) dy = 2300\pi g \left(\frac{24}{7}y^{\frac{7}{3}} - \frac{3}{10}y^{\frac{10}{3}}\right)\Big|_0^8$$
$$= 2300\pi g \left(\frac{24}{7}2^7 - \frac{3}{10}2^{10}\right) = 2300\pi g \left(\frac{4608}{35}\right) \approx 9322839.562 \text{ Joules}.$$

2. For what k > 0 do $y = x^2$ and $y = 10 - x^2$ have the same average value on the interval [0, k]? Solution: The average value of x^2 on the interval [0, k] is

$$\frac{1}{k} \int_0^k x^2 \, dx = \frac{1}{k} \left(\frac{1}{3} x^3 \right) \Big|_0^k = \frac{1}{k} \frac{1}{3} k^3 = \frac{1}{3} k^2.$$

The average value of $10 - x^2$ on the interval [0, k] is

$$\frac{1}{k} \int_0^k \left(10 - x^2 \right) dx = \frac{1}{k} \left(10x - \frac{1}{3}x^3 \right) \Big|_0^k = \frac{1}{k} \left(10k - \frac{1}{3}k^3 \right) = 10 - \frac{1}{3}k^2.$$

If the average values are equal, then

$$\frac{1}{3}k^2 = 10 - \frac{1}{3}k^2$$

and if we solve that equation we find a single positive solution, $k = \sqrt{15}$.

3. Use Simpson's Rule with n = 6 to approximate the integral:

$$\int_2^5 \frac{1}{\ln x} \, dx$$

Maintain at least 4 digits of precision at all times.

Solution: Simpson's Rule applied to this integral gives us the approximation

$$\frac{\frac{5-2}{6}}{3} \left(\frac{1}{\ln 2} + \frac{4}{\ln 2.5} + \frac{2}{\ln 3} + \frac{4}{\ln 3.5} + \frac{2}{\ln 4} + \frac{4}{\ln 4.5} + \frac{1}{\ln 5} \right) = 2.5908350256170....$$

4. Evaluate each of the following integrals:

(a)
$$\int x^5 \ln x \, dx$$

Solution: Using integration by parts, with $u = \ln x$ and $dv = x^5 dx$, we have

$$\int x^5 \ln x \, dx = \frac{1}{6} x^6 \ln x - \int \frac{1}{6} x^5 \, dx = \frac{1}{6} x^6 \ln x - \frac{1}{36} x^6 + C.$$

(b)
$$\int \sin^3 x \cos^6 x \, dx$$

Solution:

$$I = \int \sin^3 x \cos^6 x \, dx = \int \sin x (1 - \cos^2 x) \cos^6 x \, dx$$

Let $u = \cos x$ so

$$I = -\int (1 - u^2)u^6 du = \int (u^8 - u^6) du = \frac{1}{9}u^9 - \frac{1}{7}u^7 + C = \frac{1}{9}\cos^9 x - \frac{1}{7}\cos^7 x + C.$$

5. Evaluate each of the following integrals:

(a)
$$\int \frac{3 dx}{x^2 + 3x - 10}$$

Solution: Since

$$\frac{1}{x^2 + 3x - 10} = \frac{1}{(x+5)(x-2)} = \frac{-\frac{1}{7}}{x+5} + \frac{\frac{1}{7}}{x-2}$$

wo have

$$\int \frac{3 dx}{x^2 + 3x - 10} = -\frac{3}{7} \ln|x + 5| + \frac{3}{7} \ln|x - 2| + C.$$

(b)
$$\int \frac{5 dx}{x^2 + 8x + 20}$$

Solution: Since $x^2 + 8x + 20 = (x+4)^2 + 4$, we can use the substitution $x + 4 = 2 \tan \theta$:

$$\int \frac{5 \, dx}{x^2 + 8x + 20} = \int \frac{10 \sec^2 \theta \, d\theta}{4 \tan^2 \theta + 4} = \int \frac{5}{2} \, d\theta = \frac{5}{2} \theta + C = \frac{5}{2} \tan^{-1} \left(\frac{x + 4}{2}\right) + C.$$

6. Evaluate the following integrals.

(a)
$$\int \frac{dx}{\sqrt{x^2 - 8x + 18}}$$

Solution: Since $x^2 - 8x + 18 = (x - 4)^2 + 2$, we can use the substitution $x - 4 = \sqrt{2} \tan \theta$:

$$\int \frac{dx}{\sqrt{x^2 - 8x + 18}} = \int \frac{dx}{\sqrt{(x - 4)^2 + 2}} = \int \frac{\sqrt{2}\sec^2\theta \, d\theta}{\sqrt{2\tan^2\theta + 2}}$$

$$= \int \sec \theta \, d\theta = \ln|\sec \theta + \tan \theta| + C = \ln\left|\sqrt{x^2 - 8x + 18} + \frac{x - 4}{\sqrt{2}}\right| + C.$$

(b)
$$\int \frac{dx}{x^3 + 3x^2}$$

Solution: Since

$$\frac{1}{x^3 + 3x^2} = \frac{1}{x^2(x+3)} = \frac{-\frac{1}{9}}{x} + \frac{\frac{1}{3}}{x^2} + \frac{\frac{1}{9}}{x+3}$$

we have

$$\int \frac{dx}{x^3 + 3x^2} = -\frac{1}{9} \ln|x| - \frac{1}{3x} + \frac{1}{9} \ln|x + 3| + C.$$

7. Evaluate the following integrals.

(a)
$$\int x^3 e^{x^2} dx$$

Solution: Let $u = x^2$, so that du = 2x dx and we have

$$\int x^3 e^{x^2} dx = \int x^2 e^{x^2} x dx = \int u e^u \frac{1}{2} du = \frac{1}{2} \int u e^u du.$$

Applying integration by parts, with $y = u, dz = e^u du$, we have

$$\frac{1}{2} \int u e^u \, du = \frac{1}{2} \left(u e^u - \int e^u \, du \right) = \frac{1}{2} \left(x^2 e^{x^2} - e^{x^2} \right) + C.$$

(b)
$$\int \frac{dx}{(x^2-1)^{\frac{5}{2}}}$$

Solution: Using the substitution $x = \sec \theta$, we have

$$I = \int \frac{dx}{(x^2 - 1)^{\frac{5}{2}}} = \int \frac{\sec \theta}{\tan^4 \theta} d\theta = \int \frac{\cos^3 \theta}{\sin^4 \theta} d\theta = \int \frac{\cos \theta (1 - \sin^2 \theta)}{\sin^4 \theta} d\theta$$

If we let $u = \sin \theta$, we get

$$I = \int \frac{1 - u^2}{u^4} du = \int \left(\frac{1}{u^4} - \frac{1}{u^2}\right) du = -\frac{1}{3}u^{-3} + u^{-1} + C = -\frac{1}{3\sin^3\theta} + \frac{1}{\sin\theta} + C$$
$$= -\frac{x^3}{3(x^2 - 1)^{\frac{3}{2}}} + \frac{x}{(x^2 - 1)^{\frac{1}{2}}} + C.$$