Math 125A - Spring 2003
Mid-Term Exam Number Two
April 24, 2003

Name: \qquad Section: \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	70	

- This exam consists of 7 problems. Be sure that you complete all 7 problems.
- You may use a scientific (non-graphing) calculator during this examination. Other electronic devices are not allowed.
- You may use one hand-written 8.5 by 11 inch page of notes. You can use both sides of the note page.
- Show all work for full credit.
- Unless the problem specifies an approximation, an exact answer should be given.
- Mechanisms are in place to render cheating detectable and ineffective.
- You have 80 minutes to complete the exam.

1. Consider the region in the first quadrant bounded by $y=x^{\frac{3}{2}}, x=0$ and $y=8$. Suppose this region is revolved about the y-axis to create a three-dimensional solid. Suppose we have a tank with the shape of that solid, oriented so that the y-axis is perpendicular to the ground, the origin is at the bottom of the tank, and units are in meters (so the tank is 8 meters tall). If the tank is filled with a liquid with density $2300 \mathrm{~kg} / \mathrm{m}^{3}$, how much work is required to pump all of the liquid to the top of the tank?
2. For what $k>0$ do $y=x^{2}$ and $y=10-x^{2}$ have the same average value on the interval $[0, k]$?
3. Use Simpson's Rule with $n=6$ to approximate the integral:

$$
\int_{2}^{5} \frac{1}{\ln x} d x
$$

Maintain at least 4 digits of precision at all times.
4. Evaluate each of the following integrals:
(a) $\int x^{5} \ln x d x$
(b) $\int \sin ^{3} x \cos ^{6} x d x$
5. Evaluate each of the following integrals:
(a) $\int \frac{3 d x}{x^{2}+3 x-10}$
(b) $\int \frac{5 d x}{x^{2}+8 x+20}$
6. Evaluate the following integrals.
(a) $\int \frac{d x}{\sqrt{x^{2}-8 x+18}}$
(b) $\int \frac{d x}{x^{3}+3 x^{2}}$
7. Evaluate the following integrals.
(a) $\int x^{3} e^{x^{2}} d x$
(b) $\int \frac{d x}{\left(x^{2}-1\right)^{\frac{5}{2}}}$

