Math 125 C - Winter 2005 Mid-Term Exam Number Two February 24, 2005

Name:	Section:

1	20	
2	20	
3	20	
4	20	
5	10	
6	10	
Total	100	

- Complete all questions.
- You may use a calculator, and you should have one, during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 80 minutes to complete the exam.

1. Evaluate the integrals.

(a)
$$\int \sin^3 x \cos^{23} x \, dx$$

(b) $\int \sin^2 x \cos x \ln \sin x \, dx$

2. Evaluate the integrals.

(a)
$$\int \frac{x^5}{\sqrt{x^2 - 4}} \, dx$$

(b)
$$\int \frac{x^3}{x^2 - x - 6} \, dx$$

3. Evaluate the following integrals.

(a)
$$\int x^7 e^{x^4} dx$$

(b)
$$\int \frac{dx}{x^2 + 6x + 20}$$

4. Evaluate each of the following integrals. Either give the value of the integral or show that it is divergent.

(a)
$$\int_0^{\ln 2} \frac{1}{e^x - 1} \, dx$$

(b)
$$\int_2^\infty \frac{dx}{x^2\sqrt{x^2+1}}$$

5. A tank is shaped like the solid of revolution created by revolving the region in the firstquadrant bounded by $y = x^5$, y = 32, and the *y*-axis about the *y*-axis. Assume units are meters.

If the tank is filled with a liquid with density of 900 kg/m^3 , how much work is done in pumping all of the liquid in the tank to a point 3 meters above the top of the tank? Acceleration due to gravity of 9.8 m/s^2 .

6. For what value of k > 0 does the function

$$f(x) = kx^2 + \frac{1}{k}x$$

have the minimum possible average value on the interval [0, 1]?