Name: \qquad Section: \qquad

1	20	
2	20	
3	20	
4	20	
5	10	
6	10	
Total	100	

- Complete all questions.
- You may use a calculator, and you should have one, during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 80 minutes to complete the exam.

1. Evaluate the integrals.
(a) $\quad \int \sin ^{3} x \cos ^{23} x d x$
(b) $\quad \int \sin ^{2} x \cos x \ln \sin x d x$
2. Evaluate the integrals.
(a) $\int \frac{x^{5}}{\sqrt{x^{2}-4}} d x$
(b) $\quad \int \frac{x^{3}}{x^{2}-x-6} d x$
3. Evaluate the following integrals.
(a) $\int x^{7} e^{x^{4}} d x$
(b) $\quad \int \frac{d x}{x^{2}+6 x+20}$
4. Evaluate each of the following integrals. Either give the value of the integral or show that it is divergent.
(a) $\int_{0}^{\ln 2} \frac{1}{e^{x}-1} d x$
(b) $\quad \int_{2}^{\infty} \frac{d x}{x^{2} \sqrt{x^{2}+1}}$
5. A tank is shaped like the solid of revolution created by revolving the region in the firstquadrant bounded by $y=x^{5}, y=32$, and the y-axis about the y-axis. Assume units are meters.
If the tank is filled with a liquid with density of $900 \mathrm{~kg} / \mathrm{m}^{3}$, how much work is done in pumping all of the liquid in the tank to a point 3 meters above the top of the tank? Acceleration due to gravity of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
6. For what value of $k>0$ does the function

$$
f(x)=k x^{2}+\frac{1}{k} x
$$

have the minimum possible average value on the interval $[0,1]$?

