Math 125 G - Winter 2009
Mid-Term Exam Number Two
February 26, 2009

Name: \qquad
Student ID number: \qquad Section: \qquad

1	20	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	70	

- Complete all questions.
- You may use a scientific calculator during this examination; graphing calculators and other electronic devices are not allowed and should be turned off for the duration of the exam.
- If you use trial-and-error, a guess-and-check method, or numerical approximation when an exact method is available, you will not receive full credit.
- You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 80 minutes to complete the exam.

1. Evaluate the following integrals.
(a) $\int \frac{x^{2}}{(2 x+1)(x-1)} d x$
(b) $\int \frac{x^{3}}{\sqrt{1-x^{2}}} d x$
2. Evaluate the integral.

$$
\int \sqrt{x} \sin \sqrt{x} d x
$$

3. Evaluate the integral.

$$
\int \frac{d x}{\left(x^{2}-4 x+12\right)^{5 / 2}}
$$

4. Evaluate the integral.

$$
\int_{-1}^{1} \frac{1}{e^{x}-1} d x
$$

5. Evaluate the integral.

$$
\int_{0}^{\infty} e^{-x} \sin x d x
$$

6. The region R in the first quadrant of the $x y$-plane is bounded by $y=3, y=4-x$, the x-axis, and the y-axis. A tank is made in the shape of the solid of revolution created by rotating R about the y-axis.
Assume units in meters (so the tank is 3 meters high).
Suppose the tank is filled with water with a density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Set up but DO NOT EVALUATE an integral representing the work required to pump all the water to the top of the tank.
