## Falling Example

You see a rock falling at a height of 100'. One second later its height is 20'. If it was thrown downward from a height of 150', how fast was it thrown?

Let $h(t)$ be the height of the rock $t$ seconds after it is first viewed. So $h(0)=100$.
A basic newtonian assumption about falling stuff is that

$$
h^{\prime \prime}(t)=-g=-32.2
$$

That is, we assume that falling stuff is always accelerating at a constant rate, and that rate is about 32.2 feet per second ${ }^{2}$.

Now, we can find $h^{\prime}(t)$ by "antidifferentiating" $h^{\prime \prime}(t)$. We know that $h^{\prime \prime}(t)$ is the derivative of $h^{\prime}(t)$, so $h^{\prime}(t)$ is an antiderivative of $h^{\prime \prime}(t)$.

Thinking about it for a moment, we know that

$$
\frac{d}{d x}(-32.2 t)=-32.2
$$

so it must be the case that

$$
h^{\prime}(t)=-32.2 t+C_{1}
$$

where $C_{1}$ is some constant. Similarly, we can "antidifferentiate" $h^{\prime}(t)$ to get $h(t)$ :

$$
h(t)=-32.2 \frac{t^{2}}{2}+C_{1} t+C_{2} .
$$

Now, we really need to know what $C_{1}$ and $C_{2}$ are in order to answer any questions about this rock. So, we use the information we're given to get equations involving $C_{1}$ and $C_{2}$ which we can solve.

We know $h(0)=100$ and $h(1)=20$, so

$$
\begin{gathered}
h(0)=100=C 2 \\
h(1)=20=-32.2 \frac{1}{2}+C_{1}+C_{2}=-16.1+C_{1}+100 \\
C_{1}=20+16.1-100=-63.9
\end{gathered}
$$

So:

$$
h(t)=-16.1 t^{2}-63.9 t+100
$$

and the velocity function of the rock is

$$
v(t)=h^{\prime}(t)=-32.2 t-63.9
$$

so if we knew when the rock was at a height of 150 ', we could plug that value of $t$ into $v(t)$ to get the velocity.

To find this $t$, we set $h(t)=150$ and solve for $t$. Using the quadrative formula, we find two solutions: $t=-1.072036159$ and -2.8969079 . We know the value we want is $t=-1.072036159$ since we were told that the rock was thrown downward.

Pluggin this value of $t$ into $v(t)$ gives the initial velocity of the rock: $v(1.072036159)=-29.380435 \mathrm{ft} / \mathrm{sec}$.

