
Work via integrations over intervals of time
A cable of lengthl and linear densityδ is hanging vertically down into a mine shaft. The cable has anobject attached
at the free end of it with weightW . Consider the problem of lifting the cable out of the mine.

One way to solve the problem is to visualize the cable as hanging downward from the origin along they-axis, so the
free end is at−l. Then, following our usual procedure, we cut the interval[−l, 0] into n subintervals of equal length
∆y. Let yi be ay value in thei-th subinterval, withi = 1, ..., n. Then, the weight of thei-subinterval is

δ∆y

and the work to lift it to the surface is approximately

−yiδ∆y.

Then the work to lift the entire cable to the surface is approximately
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Lettingn go to infinity, we have
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The work to lift the object on the cable is simply
lW

so the total work required to lift the cable and object is

lW +
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2
l2δ.

To solve certain variations on this problem, I think is it quite helpful to integrate with respect totime. To get an idea
of how to do this, let’s rework the last example using time.

Suppose we want to lift the cable and object in the above example. Suppose we will use T (say, seconds) to lift the
cable, moving it at a constant speed. Then the work takes place in the time interval[0, T ]. Cut this interval inton
equal subintervals of length∆t. Let ti be a value oft in each subinterval. How much work is done during thei-th
subinterval? The cable moves at a speed of
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so during any subinterval, the cable moved a distance of
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How much force is applied over this distance? The cable starts out with a length ofl and is pulled up at a speed of
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so that afterti seconds, there is
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units of length of the cable still hanging. This length weighs

δ

(

l −
l

T
ti

)



so the force applied during this subinterval is
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and the work done during this subinterval is
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So the total work done is approximately
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and the total work done is exactly
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This can be simplified:
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Note that this is exactly the same as the result we got using the previous method. However, it seems like more of a
pain, so why do it? Well, it can be very usefulif we have an object on the cable which has a non-constant weight. A
classic example isthe leaking bucket. We may suppose that the bucket starts with a weight ofW but loses weight at
the rate ofr units of weight per unit time. So aftert units of time, the object will weigh

W − rt.

To calculate the work now, we simply replaceW in the above by this last expression: work is
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For example, suppose you have a 100 ft. cable that weights 5 lbs/ft. connected to a bucket that initially weights 450
pounds, but is losing weight at the rate of 2 lb/sec., and you are going to pull it to the surface is 50 seconds. Then in
the above,l = 100, W = 450, δ = 5, r = 2, T = 50 and the work required is

1

2
(5)(1002) + 450(100)−
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(2)(100)(50) = 65000ft·lb of work.


