Math 126 C - Winter 2006 Mid-Term Exam Number One January 31, 2006

Name:	Section:
Name.	Section:

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	70	

- Complete all questions.
- You may use a scientific, non-graphing calculator during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- If you use a trial-and-error or guess-and-check method, or read a numerical solution from a graph on your calculator, when an algebraic method is available, you will not receive full credit.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. Find the 2nd-degree Taylor polynomial, $T_2(x)$ for the function $f(x) = \ln(\ln x)$ based at x = e.

2. Approximate the integral

$$\int_0^2 \sin(x^2) \, dx$$

by using the first four non-zero terms of a Taylor series. Given a decimal approximation of your result.

3. Write out the first four terms of the Taylor series for the function

$$f(x) = \frac{1}{1+5x} + \frac{1}{3+x}$$

4. Find the angle between the vectors $\vec{a}=<-3,4,1>$ and $\vec{b}=<3,1,1>$. Give a decimal value for the angle.

5.	Suppose the vector $\langle x, 3, 2 \rangle$ is orthogonal to the vector $\langle 2, 3, x \rangle$. Find x .
(Find the equation of the plane through the three points (-2, 4, 0), (1, 7, -2) and (2, -5, 2)
0.	Find the equation of the plane through the three points $(-3,4,0)$, $(1,7,-3)$ and $(2,-5,3)$.

7. Find the equation of the plane containing the line of intersection of the two planes

$$x + y - z = 3$$
 and $2x - 3y + 4z = 5$

and the point (-2, 7, 3).