Math 126 C - Winter 2006
 Mid-Term Exam Number One
 January 31, 2006
 Solutions

1. It is necessary to find the first two derivatives of $f(x)$:

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{x \ln x} \\
f^{\prime \prime}(x)=-\frac{1+\ln x}{(x \ln x)^{2}}
\end{gathered}
$$

Evaluating f, f^{\prime}, and $f^{\prime \prime}$ at $x=e$ gives the coefficients of $T_{2}(x)$ for $f(x)$:

$$
T_{2}(x)=\frac{1}{e}(x-e)-\frac{1}{e^{2}}(x-e)^{2}
$$

2. The first four non-zero terms of the Taylor series for $\sin x$ are

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}
$$

so the first four non-zero terms of the Taylor series for $\sin x^{2}$ are

$$
x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}
$$

Integrating this from 0 to 2 gives

$$
\left.\left(\frac{1}{3} x^{3}-\frac{1}{7 \cdot 3!} x^{7}+\frac{1}{11 \cdot 5!} x^{11}-\frac{1}{15 \cdot 7!} x^{15}\right)\right|_{0} ^{2}=\frac{8}{3}-\frac{128}{42}+\frac{2048}{1320}-\frac{32768}{75600}=0.7371236 .
$$

3. (Version 1) We use

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots
$$

so that

$$
\frac{1}{1-(-5 x)}=1-5 x+(5 x)^{2}-(5 x)^{3}+\ldots
$$

and

$$
\frac{1}{3+x}=\left(\frac{1}{3}\right) \frac{1}{1-\left(-\frac{1}{3} x\right)}=\frac{1}{3}\left(1-\frac{1}{3} x+\left(\frac{1}{3} x\right)^{2}-\left(\frac{1}{3} x\right)^{3}+\ldots\right)=\frac{1}{3}-\frac{1}{9} x+\frac{1}{27} x^{2}-\frac{1}{81} x^{3}+\ldots
$$

Adding these together, we have

$$
\frac{1}{1+5 x}+\frac{1}{3+x}=\frac{4}{3}-\frac{46}{9} x+\frac{676}{27} x^{2}-\frac{10126}{81} x^{3}+\ldots
$$

(Version 2) Using a similar technique,

$$
\frac{1}{1+7 x}=1-7 x+(7 x)^{2}-(7 x)^{3}+\ldots
$$

and

$$
\frac{1}{2+x}=\left(\frac{1}{2}\right) \frac{1}{1+\frac{x}{2}}=\frac{1}{2}\left(1+\frac{x}{2}+\left(\frac{x}{2}\right)^{2}+\left(\frac{x}{2}\right)^{3}+\ldots\right)
$$

Adding these together, we have

$$
\frac{1}{2+x}+\frac{1}{1+7 x}=\frac{3}{2}-\frac{27}{4} x+\frac{393}{8} x^{2}-\frac{5489}{16} x^{3}+\ldots
$$

4. (Version 1)

$$
\theta=\cos ^{-1}\left(\frac{4}{\sqrt{26} \sqrt{11}}\right)=1.80958408790828020
$$

(Version 2)

$$
\theta=\cos ^{-1}\left(\frac{2}{\sqrt{89} \sqrt{69}}\right)=1.5452718055317992
$$

5. Since the vectors are orthogonal,

$$
<x, 3,2>\cdot<2,3, x>=0
$$

so

$$
2 x+9+2 x=0
$$

from which we conclude that $x=-\frac{9}{4}$.
6. Finding vectors parallel (or "in") the plane, we get

$$
\vec{a}=<4,3,-3>\text { and } \vec{b}=<1,-12,6>
$$

Their dot product is a normal vector to the plane:

$$
\vec{a} \times \vec{b}=<-18,-27,-51>
$$

so the equation of the plane is

$$
-18(x+3)-27(y-4)-51 z=0
$$

7. (Version 1) The direction vector of the line is orthogonal to the normal vectors of both planes so is parallel to

$$
<1,1,-1>\times<2,-3,4>=<1,-6,-5>
$$

This vector is parallel to the plane we're looking for. To get another vector, we need another point in the plane. We can get a point that's on the line, and hence on the plane, by setting $x=0$ and solving. We find $(0,17,14)$ is on the line, and on the plane. The vector extending from this point to $(-2,7,3)$ is

$$
<-2,-10,-11>
$$

and so the normal vector to the plane we seek is parallel to

$$
<-2,-10,-11>\times<1,-6,-5>=<-16,-21,22>
$$

So, the equation of the plane is

$$
-16(x+2)-21(y-7)+22(z-3)=0
$$

(Version 2) The direction vector of the line is orthogonal to the normal vectors of both planes so is parallel to

$$
<1,1,-1>\times<2,-3,4>=<1,-6,-5>
$$

This vector is parallel to the plane we're looking for. To get another vector, we need another point in the plane. We can get a point that's on the line, and hence on the plane, by setting $x=0$ and solving. We find $(0,22,16)$ is on the line, and on the plane. The vector extending from this point to $(-2,7,3)$ is

$$
<-2,-15,-13>
$$

and so the normal vector to the plane we seek is parallel to

$$
<1,-6,-5>\times<-2,-15,-13>=<3,23,-27>
$$

So, the equation of the plane is

$$
3 x+23(y-22)-27(x-16)=0
$$

