Math 126 C - Winter 2006
 Mid-Term Exam Number Two
 Solutions
 February 16, 2006

1. Eliminate the parameter in the following parametric equation pair to get a Cartesian equation for the curve that involves no trigonometric functions.

$$
x=\cos t, y=\sin t-\cos t
$$

There are many different ways to solve this. Here's one:
We know

$$
\sin ^{2} t+\cos ^{2} t=1
$$

and

$$
\cos t=x
$$

and

$$
\sin t=y+\cos t=y+x
$$

so that

$$
(y+x)^{2}+x^{2}=1
$$

and we're done.
Here's another way: notice that we can write

$$
\sin t= \pm \sqrt{1-\cos ^{2} t}= \pm \sqrt{1-x^{2}}
$$

so that

$$
y= \pm \sqrt{1-x^{2}}-x
$$

2. Consider the curve defined parametrically by the parametric equations

$$
x=\ln \ln t, y=\ln t-(\ln t)^{2} .
$$

Find the equation of the tangent line to the curve at the point $t=e$.
If $t=e$ then $x=0$, and $y=0$. We have

$$
\frac{d x}{d t}=\frac{1}{t \ln t}=\frac{1}{e}
$$

when $t=e$, and

$$
\frac{d y}{d t}=\frac{1}{t}-2(\ln t) \frac{1}{t}=\frac{1}{e}-\frac{2}{e}=-\frac{1}{e}
$$

when $t=e$.
Thus, when $t=e$,

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=-1
$$

so the tangent line has equation $y=-x$.
3. Find the parametric equations for the tangent line to the curve defined by

$$
x=t^{3}-t, y=t^{6}+t^{2}+1, z=\frac{1}{2} t^{2}+5 t
$$

at the point $(0,1,0)$.
We find

$$
\begin{gathered}
\frac{d x}{d t}=3 t^{2}-1 \\
\frac{d y}{d t}=6 t^{5}+2 t \\
\frac{d z}{d t}=t+5
\end{gathered}
$$

The point $(0,1,0)$ corresponds to $t=0$. To see this, note that we need

$$
t^{3}-t=0
$$

which tells us

$$
t\left(t^{2}-1\right)=0
$$

so we know $t=0, t=1$ or $t=-1$. Checking these values with $y=t^{6}+t^{2}+1$, we find that only $t=0$ works.
Plugging $t=0$ into the derivatives above, and using the point $(0,1,0)$, we have the tangent line equations

$$
x=-t, y=1, z=5 t .
$$

4. At what point does the curve $y=e^{x}$ have maximum curvature?

We have a formula to find the curvature function $\kappa(x)$ for the graph of a given function $f(x)=e^{x}$:

$$
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{3 / 2}}=\frac{e^{x}}{\left(1+e^{2 x}\right)^{3 / 2}}
$$

Note that we have used the fact that $e^{x}>0$ for all x to remove the absolute value symbol. Now we want to find out how large this function $\kappa(x)$ can get. We can start our search for maxima of this function be studying the function's first derivative.

$$
\begin{gathered}
\kappa^{\prime}(x)=\frac{e^{x}\left(1+e^{2 x}\right)^{3 / 2}-e^{x} \frac{3}{2}\left(1+e^{2 x}\right)^{1 / 2} 2 x}{\left(1+e^{2 x}\right)^{3}} \\
=\frac{e^{x}\left(1+e^{2 x}\right)^{1 / 2}\left(\left(1+e^{2 x}\right)-3 e^{2 x}\right)}{\left(1+e^{2 x}\right)^{3}}=\frac{e^{x}\left(1+e^{2 x}\right)^{1 / 2}\left(1-2 e^{2 x}\right)}{\left(1+e^{2 x}\right)^{3}}
\end{gathered}
$$

We note that this is defined for all x, so the only critical points will occur where this is zero. If this is zero, then

$$
1-2 e^{2 x}=0
$$

since $e^{x}>0$ for all x, and $\left(1+e^{2 x}\right)^{1 / 2}>0$ for all x.
Hence, the only critical point is at

$$
x=\frac{1}{2} \ln \frac{1}{2}
$$

Since $2 e^{2 x}$ is a strictly increasing function, we can see that that $\kappa^{\prime}(x)$ is going to be negative for x greater than the value we just found, and it will be positive for x less than that value. In other words, we can conclude that this value of x gives us the maximum value of $\kappa(x)$. The point on the curve where curvature is maximum is thus

$$
\left(\frac{1}{2} \ln \frac{1}{2}, \frac{1}{\sqrt{2}}\right)
$$

5. Find the length of the curve defined by

$$
\vec{r}(t)=\left\langle\frac{2 \sqrt{2}}{3} t^{3 / 2}, t, \frac{1}{2} t^{2}\right\rangle, 0 \leq t \leq 4
$$

Conveniently,

$$
\left(\frac{d}{d t} \frac{2 \sqrt{2}}{3} t^{3 / 2}\right)^{2}+\left(\frac{d}{d t} t\right)^{2}+\left(\frac{d}{d t} \frac{1}{2} t^{2}\right)^{2}=(t+1)^{2}
$$

so the arc length is just

$$
\int_{0}^{4}(t+1) d t=12
$$

6. Find the curvature of the curve defined by

$$
\vec{r}(t)=\left\langle\frac{1}{2} t^{2}-2 t, t^{2}-t, t^{2}+t\right\rangle
$$

at the point $t=0$.
We have two useful formulas for finding the curvature of a 3D curve. One is

$$
\kappa(t)=\frac{\left|\vec{T}^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|}
$$

and the other is

$$
\kappa(t)=\frac{\mid \vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)}{\left|\vec{r}^{\prime}(t)\right|^{3}}
$$

For this problem, the second equation is much easier to use. I really can't think of a time when it would be preferable to use the first one, expect in that rare occasion where you are given $\overrightarrow{T^{\prime}}(t)$ and don't have to derive it from $\vec{r}(t)$.

So we use the second formula. Since we are interested in $\kappa(0)$, we need only find $\vec{r}^{\prime}(0)$ and $\vec{r}^{\prime \prime}(0)$ and plug them into the formula:

$$
\begin{gathered}
\vec{r}^{\prime}(t)=\langle t-2,2 t-1,2 t+1\rangle \\
\vec{r}^{\prime}(0)=\langle-2,-1,1\rangle \\
\vec{r}^{\prime \prime}(t)=\langle 1,2,2\rangle \\
\vec{r}^{\prime \prime}(0)=\langle 1,2,2\rangle
\end{gathered}
$$

Plugging these into our formula gives us

$$
\kappa(0)=\frac{\sqrt{50}}{(\sqrt{6})^{3}}=\frac{5}{6 \sqrt{3}} .
$$

