Math 126G - Spring 2002
First Mid-Term Exam
April 23, 2002

Name \qquad Section \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	70	

- Complete all questions.
- You may use a calculator during this examination. Other calculating devices are not allowed.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. Indicate whether each of the following statements is true or false by circling T or F .
$\mathrm{T} \quad \mathrm{F} \quad$ If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
T F If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ must converge.
$\mathrm{T} \quad \mathrm{F} \quad$ If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=100}^{\infty} a_{n}$ must converge.
T F If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ diverge, then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ must diverge.
$\mathrm{T} \quad \mathrm{F} \quad$ If $\lim _{n \rightarrow \infty} a_{n}=L$, then $\sum_{n=1}^{\infty} a_{n}=L$.
2. Determine whether each sequence converges or diverges. If it converges, find the limit.
(a) $\left\{(-1)^{n} \sin \left(\frac{2}{n}\right)\right\}$
(b) $\left\{\left(n+\frac{1}{n}\right)^{2}-n^{2}\right\}$
3. Determine whether the series $\sum_{n=2}^{\infty}(-1)^{n} \frac{3}{4^{n}}$ converges or diverges. If it converges, find its sum.
4. By comparing it with an integral, give an upper bound for the series $\sum_{n=3}^{\infty} \frac{1}{n(\ln n)^{2}}$. That is, find a value A so that

$$
\sum_{n=3}^{\infty} \frac{1}{n(\ln n)^{2}}<A
$$

5. Determine whether each of the following series converge or diverge. Explain your answer and show all work.
(a) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
(b) $\sum_{n=0}^{\infty} \frac{2^{n}}{(n!)^{2}}$
6. Consider the power series

$$
\sum_{n=0}^{\infty}(-2)^{n} \frac{x^{n}}{n+1}
$$

(a) Find all values of x for which the series converges.
(b) What is the radius of convergence of this series?
7. Determine a power series for the function $f(x)=\frac{x^{2}}{1-2 x}$.

