Math 126G - Spring 2002

First Mid-Term Exam Solutions

April 23, 2002

1. Indicate whether each of the following statements is true or false by circling T or F .

T If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
F If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ must converge.
T If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=100}^{\infty} a_{n}$ must converge.
F If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ diverge, then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ must diverge.
F If $\lim _{n \rightarrow \infty} a_{n}=L$, then $\sum_{n=1}^{\infty} a_{n}=L$.
2. Determine whether each sequence converges or diverges. If it converges, find the limit.
(a) $\left\{(-1)^{n} \sin \left(\frac{2}{n}\right)\right\}$

$$
\lim _{n \rightarrow \infty}\left|(-1)^{n} \sin \left(\frac{2}{n}\right)\right|=\lim _{n \rightarrow \infty}\left|\sin \left(\frac{2}{n}\right)\right|=\left|\sin \left(\lim _{n \rightarrow \infty} \frac{2}{n}\right)\right|=|\sin (0)|=0
$$

so

$$
\lim _{n \rightarrow \infty}(-1)^{n} \sin \left(\frac{2}{n}\right)=0
$$

So, the sequence converges.
(b) $\left\{\left(n+\frac{1}{n}\right)^{2}-n^{2}\right\}$

$$
\begin{aligned}
& \quad\left(n+\frac{1}{n}\right)^{2}-n^{2}=\lim _{n \rightarrow \infty}\left(n^{2}+2+\frac{1}{n^{2}}-n^{2}\right)=\lim _{n \rightarrow \infty}\left(2+\frac{1}{n^{2}}\right) \\
& =2+0=2 \text {, so the sequence converges. }
\end{aligned}
$$

3. Determine whether the series $\sum_{n=2}^{\infty}(-1)^{n} \frac{3}{4^{n}}$ converges or diverges. If it converges, find its sum.

This is a geometric series with first term $3 / 16$ and common ratio $-1 / 4$. Since $|-1 / 4|=1 / 4<1$, the series converges, and the sum is

$$
\frac{\frac{3}{16}}{1-\left(-\frac{1}{4}\right)}=\frac{\frac{3}{16}}{\frac{5}{4}}=3 / 20 .
$$

4. By comparing it with an integral, give an upper bound for the series $\sum_{n=3}^{\infty} \frac{1}{n(\ln n)^{2}}$. That is, find a value A so that

$$
\sum_{n=3}^{\infty} \frac{1}{n(\ln n)^{2}}<A
$$

Since n strictly increases with n, and $\ln n$ strictly increases with $n, n(\ln n)^{2}$ strictly increases with n. Hence, $\frac{1}{n(\ln n)^{2}}$ strictly decreases with n. Also, $\frac{1}{n(\ln n)^{2}}>0$ for $n>1$. As a result, we have the comparison

$$
\sum_{n=3}^{\infty} \frac{1}{n(\ln n)^{2}}<\int_{2}^{\infty} \frac{d x}{x(\ln x)^{2}}
$$

provided the limit converges. We find

$$
\begin{aligned}
& \int_{2}^{\infty} \frac{d x}{x(\ln x)^{2}}=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{d x}{x(\ln x)^{2}}=\lim _{t \rightarrow \infty} \int_{\ln 2}^{t} \frac{d u}{u^{2}} \\
& =\lim _{t \rightarrow \infty}-\left.\frac{1}{u}\right|_{\ln 2} ^{t}=\lim _{t \rightarrow \infty}\left(-\frac{1}{t}+\frac{1}{\ln 2}\right)=0+\frac{1}{\ln 2}=\frac{1}{\ln 2} .
\end{aligned}
$$

So $A=\frac{1}{\ln 2}$ is an upper bound for the series.
5. Determine whether each of the following series converge or diverge. Explain your answer and show all work.
(a) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$

This series diverges. You should show this using the limit comparison test with the harmonic series. The integral test would be another more complicated option.
(b) $\sum_{n=0}^{\infty} \frac{2^{n}}{(n!)^{2}}$

This series converges. You should show this using the ratio test:

$$
\lim _{n \rightarrow \infty} \frac{2^{n+1}}{((n+1)!)^{2}} \frac{(n!)^{2}}{2^{n}}=\lim _{n \rightarrow \infty} \frac{2}{(n+1)^{2}}=0<1 .
$$

6. Consider the power series

$$
\sum_{n=0}^{\infty}(-2)^{n} \frac{x^{n}}{n+1}
$$

(a) Find all values of x for which the series converges.

Using the ratio test, we have

$$
\lim _{n \rightarrow \infty}\left|\frac{(-2)^{n+1} x^{n+1}}{n+2} \frac{n+1}{(-2)^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2 x(n+1)}{n+2}\right|=\lim _{n \rightarrow \infty}|2 x|,
$$

so the series converges absolutely if $|2 x|<1$ and diverges if $|2 x|>1$. If $|2 x|=1$, then $x=1 / 2$ or $x=-1 / 2$. For $x=1 / 2$, we have

$$
\sum_{n=0}^{\infty}(-2)^{n} \frac{x^{n}}{n+1}=\sum_{n=0}^{\infty}(-2)^{n} \frac{(1 / 2)^{n}}{n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1}
$$

which you can show is convergent by the alternating series test. If $x=-1 / 2$, we have

$$
\sum_{n=0}^{\infty}(-2)^{n} \frac{x^{n}}{n+1}=\sum_{n=0}^{\infty}(-2)^{n} \frac{(-1 / 2)^{n}}{n+1}=\sum_{n=0}^{\infty} \frac{1}{n+1}
$$

which is the harmonic series and is therefore divergent. Thus this power series converges for $\frac{-1}{2}<x \leq \frac{1}{2}$.
(b) What is the radius of convergence of this series?

Since the interval of convergence has length 1 , the radius of convergence is $1 / 2$.
7. Determine a power series for the function $f(x)=\frac{x^{2}}{1-2 x}$.

We know

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

so

$$
\frac{1}{1-2 x}=\sum_{n=0}^{\infty}(2 x)^{n}
$$

so

$$
\frac{x^{2}}{1-2 x}=x^{2} \sum_{n=0}^{\infty}(2 x)^{n}=\sum_{n=0}^{\infty} x^{2}(2 x)^{n}=\sum_{n=0}^{\infty} 2^{n} x^{n+2}=\sum_{n=2}^{\infty} 2^{n-2} x^{n}=\sum_{n=2}^{\infty} \frac{2^{n}}{4} x^{n}
$$

