Math 126G - Spring 2002
Second Mid-Term Exam
May 23, 2002

Name \qquad Section \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

- Complete all questions.
- You may use a calculator during this examination. Other calculating devices are not allowed.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. (10 points) Indicate whether each of the following statements is true or false by circling T or F.
T $\quad \mathrm{F} \quad$ If $\vec{a} \cdot \vec{b}=0$, then \vec{a} and \vec{b} are parallel.
T $\mathrm{F} \quad\langle a, 0,0\rangle \times\langle 0, b, 0\rangle=\langle 0,0, a b\rangle$.
T $\quad \mathrm{F} \quad$ If $a b=1$, then $\langle a, 1,1\rangle \times\langle 1, b, 1\rangle=\langle 1-b, 1-a, 0\rangle$.
$\mathrm{T} \quad \mathrm{F} \quad$ If $\vec{a} \cdot \vec{b}=0$ then either \vec{a} or \vec{b} is the zero vector.
T F A plane has an infinite number of vectors which are perpendicular to it.
2. (10 points) Determine the Taylor polynomial of degree 3 for the function $f(x)=(2 x+1)^{2 / 3}$ centered at $a=0$.
3. (10 points) Find the equation of the plane containing the line

$$
x=3+t, y=4-2 t, z=1-t
$$

and the point $(1,2,5)$.
4. (10 points) Consider the space curve defined by

$$
\vec{r}(t)=\left\langle 4 t^{3}+12 t^{2}, 4 t^{3}-6 t^{2}, 3 t^{4}-18 t^{2}\right\rangle
$$

Find all values of t such that a tangent vector to $\vec{r}(t)$ is parallel to the line

$$
x=5-2 t, y=8+4 t, z=-7-4 t .
$$

5. (10 points) Consider the curve defined by the parametric equations

$$
x=t^{3}+5 t, y=t^{3}-12 t
$$

(a) Find all points on the curve where $\frac{d y}{d x}=0$.
(b) Find the concavity $\frac{d^{2} y}{d x^{2}}$ at each of the points you found in part (a).
6. (10 points) Find the equation of the line that is the intersection of the plane

$$
x+y+3 z=8
$$

with the plane

$$
2 x-y-z=4
$$

