Math 126D - Spring 2002
Second Mid-Term Exam Solutions
May 23, 2002

1. (10 points) Indicate whether each of the following statements is true or false by circling T or F .
T $\quad \mathbf{F} \quad$ If $\vec{a} \cdot \vec{b}=0$, then \vec{a} and \vec{b} are parallel.
T F $\langle a, 0,0\rangle \times\langle 0, b, 0\rangle=\langle 0,0, a b\rangle$.
T F If $a b=1$, then $\langle a, 1,1\rangle \times\langle 1, b, 1\rangle=\langle 1-b, 1-a, 0\rangle$.
T $\quad \mathbf{F} \quad$ If $\vec{a} \cdot \vec{b}=0$ then either \vec{a} or \vec{b} is the zero vector.
T F A plane has an infinite number of vectors which are perpendicular to it.
2. (10 points) Determine the Taylor polynomial of degree 3 for the function $f(x)=(2 x+1)^{2 / 3}$ centered at $a=0$.
We have:

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	$(2 x+1)^{2 / 3}$	1
1	$\frac{2}{3}(2 x+1)^{-1 / 3}(2)$	$\frac{4}{3}$
2	$-\frac{2}{9}(2 x+1)^{-4 / 3}\left(2^{2}\right)$	$-\frac{8}{9}$
3	$\frac{8}{27}(2 x+1)^{-7 / 3}\left(2^{3}\right)$	$\frac{64}{27}$

Thus, the Taylor polynomial of degree 3 for $f(x)=(2 x+1)^{2 / 3}$ is

$$
f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}=1+\frac{4}{3} x-\frac{4}{9} x^{2}+\frac{32}{81} x^{3} .
$$

3. (10 points) Find the equation of the plane containing the line

$$
x=3+t, y=4-2 t, z=1-t
$$

and the point $(1,2,5)$.
The direction vector of the line is $\langle 1,-2,-1\rangle$. Call this vector \vec{a}. Letting $t=0$, we find a point on the line: $x=3, y=4, z=1$, i.e., the point $(3,4,1)$. The vector pointing from $(1,2,5)$ to the point $(3,4,1)$ is the vector $\langle 2,2,-4\rangle$. Call this vector \vec{b}. Vectors \vec{a} and \vec{b} are both parallel to the plane we're looking for. So, the cross product of \vec{a} and \vec{b} is parallel to the normal vector of this plane. We find $\vec{a} \times \vec{b}=\langle 10,2,6\rangle$, and the equation of the plane is

$$
10(x-1)+2(y-2)+6(z-5)=0
$$

or

$$
10 x+2 y+6 z-44=0
$$

4. (10 points) Consider the space curve defined by

$$
\vec{r}(t)=\left\langle 4 t^{3}+12 t^{2}, 4 t^{3}-6 t^{2}, 3 t^{4}-18 t^{2}\right\rangle
$$

Find all values of t such that the tangent vector to $\vec{r}(t)$ is parallel to the line

$$
x=5-2 t, y=8+4 t, z=-7-4 t .
$$

The direction vector of the line is $\langle-2,4,-4\rangle$. We have

$$
\vec{r}^{\prime}(t)=\left\langle 12 t^{2}+24 t, 12 t^{2}-12 t, 12 t^{3}-36 t\right\rangle .
$$

So, we want to find t and c so that

$$
\vec{r}^{\prime}(t)=c\langle-2,4,-4\rangle .
$$

At such a t, we must have

$$
12 t^{2}-12 t=-2\left(12 t^{2}+24 t\right)
$$

from which we can conclude that $t=0$ or $t=-1$.
However, $\vec{r}^{\prime}(0)$ is the zero vector, which is parallel to nothing, and $\vec{r}^{\prime}(1)=\langle-12,24,24\rangle$ which is clearly not parallel to $\langle-2,4,-4\rangle$.
There are no values of t at which the tangent vector is parallel to the given line.
5. (10 points) Consider the curve defined by the parametric equations

$$
x=t^{3}+5 t, y=t^{3}-12 t
$$

(a) Find all points on the curve where $\frac{d y}{d x}=0$.

We have

$$
\frac{d y}{d t}=3 t^{2}-12, \frac{d x}{d t}=3 t^{2}+5
$$

so that

$$
\frac{d y}{d x}=\frac{3 t^{2}-12}{3 t^{2}+5}
$$

Note that $3 t^{2}+5 \neq 0$ for all t, so that if $\frac{d y}{d x}=0$, then $3 t^{2}-12=0$, i.e. $t=2$ or $t=-2$.
(b) Find the concavity $\frac{d^{2} y}{d x^{2}}$ at each of the points you found in part (a).

We have, via the chain rule,

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d t}\left(\frac{d y}{d x}\right) \frac{d t}{d x}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}} .
$$

Now,

$$
\frac{d}{d t}\left(\frac{d y}{d x}\right)=\frac{102 t}{3 t^{2}+5}
$$

so

$$
\frac{d^{2} y}{d x^{2}}=\frac{102 t}{\left(3 t^{2}+5\right)^{2}}
$$

Thus, at $t=2, \frac{d^{2} y}{d x^{2}}=\frac{12}{17}$, and at $t=-2, \frac{d^{2} y}{d x^{2}}=\frac{-12}{17}$.
6. (10 points) Find the equation of the line that is the intersection of the plane

$$
x+y+3 z=8
$$

with the plane

$$
2 x-y-z=4
$$

There are a few ways to solve this. Here's one.
If we have two points on the line, then we can determine the equation of the line. Algebraically, the equations

$$
x+y+3 z=8 \text { and } 2 x-y-z=4
$$

can be solved by choosing arbitrary values of x, say. Let $x=0$. Then we have

$$
y+3 z=8,-y-z=4
$$

which, by adding, yields

$$
2 z=12
$$

or $z=6$. From $-y-z=4$, we have $y=-10$. Hence the point $(0,-10,6)$ is on the line. Letting $x=2$, we get the point $(2,-3,3)$. Hence a direction vector for the line is $\langle 2-0,-3-(-10), 3-6\rangle=\langle 2,7,-3\rangle$, so a set of equations for the line is

$$
x=2 t, y=-10+7 t, z=6-3 t .
$$

