Math 126 C - Spring 2007
Mid-Term Exam Number Two
May 10, 2007

Name: \qquad Section: \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- Complete all questions.
- You may use a scientific, non-graphing calculator during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- If you use a trial-and-error or guess-and-check method, or read a numerical solution from a graph on your calculator, when an algebraic method is available, you will not receive full credit.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. Consider the curve defined by the vector equation

$$
\vec{r}(t)=\left\langle 4 t, 5 t^{3}, 2 t^{2}\right\rangle
$$

(a) Find the unit tangent vector $\vec{T}(t)$ at the point where $t=1$.
(b) Find the parametric equations of the tangent line the curve at the point where $t=1$.
2. Does the curve defined by the polar equation

$$
r=\sec \theta+\tan \theta
$$

intersect the vertical line $x=2$? Explain.
3. Suppose a particle is moving in 3-dimensional space so that its position vector is

$$
\vec{r}(t)=\left\langle t, t^{2}, \frac{1}{t}\right\rangle
$$

(a) Find the tangential component of the particle's acceleration vector at time $t=1$.
(b) Find all values of t at which the particle's velocity vector is orthogonal to the particle's acceleration vector.
4. Consider the curve in the $x y$-plane defined by the position vector function

$$
\vec{r}(t)=\left\langle t^{2}-3 t, t^{2}+2 t\right\rangle
$$

Find the t-value of the point of maximum curvature on this curve.
5. Let $f(x, y)=x e^{y}-\ln (x+y)$.
(a) Sketch the domain of f.
(b) Find $f_{x y}(x, y)$.

