Math 126 C - Spring 2008

Mid-Term Exam Number Two
May 22, 2008

Name: \qquad Section: \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

- Complete all questions.
- You may use a scientific, non-graphing calculator during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- If you use a trial-and-error or guess-and-check method, or read a numerical solution from a graph on your calculator, when an algebraic method is available, you will not receive full credit.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. Find the equation of the plane through the points $(0,1,2),(1,3,4)$, and $(5,5,5)$.
2. Let L be the line

$$
x=1+2 t, y=2+t, z=3+3 t
$$

(a) Find the point of intersection of L with the line

$$
x=19+t, y=13-\frac{1}{2} t, z=43-5 t .
$$

(b) For what value of a will the plane

$$
a x+6 y-7 z=2
$$

not intersect the line L ?
3. Consider the 3D curve defined by the position function

$$
\vec{r}(t)=\left\langle t, 4-t^{2}, \ln t\right\rangle .
$$

(a) Find the point on the curve at which the tangent vector is parallel to the vector $\langle 2,-1,8\rangle$.
(b) Find the parametric equations of the tangent line at the point you found in part (a).
4. A particle is moving so that its position function is

$$
\vec{r}(t)=\left\langle t, t^{2}, \frac{1}{t^{3}}\right\rangle
$$

Find all times t at which the tangential component of the particle's acceleration vector is equal to zero.
5. Find and classify all critical points of the surface

$$
z=f(x, y)=x y^{2}+y-x
$$

6. Find the points of maximum curvature on the curve $y=x^{3}$.
