Tangent Spirals

When studying curves in the plane defined via polar coordinates, one class of interest is curves defined by equations of the form

$$
r=f(\theta)
$$

This equation can be considered analogous to the cartesian equation $y=f(x)$.
Now, if f is a monotonic function (i.e., it is always increasing, or always decreasing), then the curve defined by $r=f(\theta)$ is generally called a spiral. The spiral $r=\theta$ is the simplest example.
In studying curves of the form $y=f(x)$, the tangent line is a useful tool. We can consider the tangent line to a polar curve $r=f(\theta)$; however, for a curve of this sort, $\frac{d y}{d x}$ is generally a messy affair. Instead, let us make an analogy, as suggested by the following table.

	Cartesian	polar
curve defined by	$y=f(x)$	$r=f(\theta)$
derivative	$\frac{d y}{d x}=f^{\prime}(x)$	$\frac{d r}{d \theta}=f^{\prime}(\theta)$
tangent curve	$y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$	$r=f^{\prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)+f\left(x_{0}\right)$
tangent curve type	line	spiral

In this way, we can define the tangent spiral to a curve at a point.
Here are some graphic examples.
First, is the circle $r=\sin \theta$ together with its tangent spiral at $\theta=\frac{\pi}{4}$.

Next, the same circle with its tangent spiral at $\theta=\frac{3 \pi}{8}$.

An interesting phenomenon occurs as we approach the point at $\theta=\frac{\pi}{2}$. Here's the picture for $\theta=\frac{9}{10} \frac{\pi}{2}$:

When we get to $\theta=\frac{\pi}{2}$, the result looks like this:

This is a circle, not a spiral. What happened? Well, if

$$
r=\sin \theta
$$

then

$$
\frac{d r}{d \theta}=\cos \theta=\cos \frac{\pi}{2}=0
$$

when $\theta=\frac{\pi}{2}$. So, our formula for the tangent spiral gives us

$$
r=f^{\prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)+f\left(\theta_{0}\right)=0+\sin \frac{\pi}{2}=1
$$

We see that whenever $f^{\prime}\left(\theta_{0}\right)$ is zero, our formula for the tangent spiral becomes the formula for a circle. Note that if $f^{\prime}(\theta)=0$, then the would-be spiral has equation $r=$ a constant, not a monotonic function of θ.

This is analogous to the horizontal tangent which occurs when $f^{\prime}(x)=0$.
A natural question at this point: is the "tangent spiral" actually tangent to the curve? That is, is the tangent line to the curve the same as the tangent line to the spiral? Let's see.

For a curve defined by $r=f(\theta)$, we have the slope of the tangent line at the point $\theta=\theta_{0}$ is

$$
\frac{d y}{d x}=\frac{f^{\prime}\left(\theta_{0}\right) \sin \theta_{0}+f\left(\theta_{0}\right) \cos \theta_{0}}{f^{\prime}\left(\theta_{0}\right) \cos \theta_{0}-f\left(\theta_{0}\right) \sin \theta_{0}}
$$

The spiral "tangent" to the curve at $\theta=\theta_{0}$ has equation

$$
r=f^{\prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)+f\left(\theta_{0}\right)=g(\theta), \text { say }
$$

Then, the slope of the tangent line to the spiral at this point is

$$
\frac{g^{\prime}\left(\theta_{0}\right) \sin \theta_{0}+g\left(\theta_{0}\right) \cos \theta_{0}}{g^{\prime}\left(\theta_{0}\right) \cos \theta_{0}-g\left(\theta_{0}\right) \sin \theta_{0}}=\frac{f^{\prime}\left(\theta_{0}\right) \sin \theta_{0}+\left(f^{\prime}\left(\theta_{0}\right)\left(\theta_{0}-\theta_{0}\right)+f\left(\theta_{0}\right)\right) \cos \theta_{0}}{f^{\prime}\left(\theta_{0}\right) \cos \theta-\left(f^{\prime}\left(\theta_{0}\right)\left(\theta_{0}-\theta_{0}\right)+f\left(\theta_{0}\right)\right) \sin \theta_{0}}
$$

and this simplfies precisely to $\frac{d y}{d x}$ above.
So the tangent spirals are tangent.

