How to extract derivative values from Taylor series

Since the Taylor series of f based at $x=b$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(b)}{n!}(x-b)^{n}
$$

we may think of the Taylor series as an encoding of all of the derivatives of f at $x=b$: that information is in there.

As a result, if we know the Taylor series for a function, we can extract from it any derivative of the function at b.

Here are a few examples.

Example. Let $f(x)=x^{2} e^{3 x}$. Find $f^{11}(0)$.

The Taylor series for e^{x} based at $b=0$ is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

so we have

$$
e^{3 x}=\sum_{n=0}^{\infty} \frac{(3 x)^{n}}{n!}
$$

and

$$
x^{2} e^{3 x}=\sum_{n=0}^{\infty} \frac{3^{n} x^{n+2}}{n!}=\sum_{m=2}^{\infty} \frac{3^{m-2}}{(m-2)!} x^{m} .
$$

We can see that, for $m \geq 2$ the coefficient on x^{m} is

$$
\frac{3^{m-2}}{(m-2)!}
$$

On the other hand, this is the Taylor series for $f(x)$ based at $b=0$, and so the coefficient on x^{m} is equal to

$$
\frac{f^{(m)}(0)}{m!} .
$$

Equating these two, we have

$$
\frac{f^{(m)}(0)}{m!}=\frac{3^{m-2}}{(m-2)!}
$$

and we can say

$$
f^{(m)}(0)=3^{m-2} \frac{m!}{(m-2)!}=3^{m-2} m(m-1)
$$

Thus, taking $m=11$, we have

$$
f^{(11)}(0)=3^{9}(11)(10)=2165130
$$

Example. Let $f(x)=\cos x^{2}$. Find $f^{(88)}(0)$.

We know the Taylor series for $\cos x$ based at $b=0$ is

$$
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

By substitution, we then quickly find

$$
\cos x^{2}=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{2}\right)^{2 n}}{(2 n)!}
$$

and we may simplify this to

$$
\cos x^{2}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{(2 n)!}
$$

Now, with $f(x)=\cos x^{2}$, and $\mathrm{b}=0$, we have

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{(2 n)!}=\sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!}(x)^{j}
$$

Here I rewrote the general Taylor series based at zero with then index j to help our thinking.

From this, we can see that if j is not a multiple of four, then $f^{j}(0)=0$, since the only powers of x which appear in the Taylor series are multiples of four. If j is a multiple of four, say $j=4 n$, then

$$
\frac{f^{(j)}(0)}{j!}=\frac{(-1)^{n}}{(2 n)!}
$$

by matching up the coefficients: the coefficient on each power of x in the left- and right-hand expressions must be the same.

Thus, we can say

$$
f^{(j)}(0)=(-1)^{n} \frac{j!}{(2 n)!}=(-1)^{j / 4} \frac{j!}{(j / 2)!} .
$$

Finally, we may conclude that

$$
f^{(88)}(0)=(-1)^{44} \frac{88!}{44!} \approx 6.9776 \times 10^{7} 9
$$

