How to extract derivative values from Taylor series

Since the Taylor series of f based at x = bis
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we may think of the Taylor series as an encoding of all of the derivatives of f at z = b: that information
is in there.

As a result, if we know the Taylor series for a function, we can extract from it any derivative of the
function at b.

Here are a few examples.
Example. Let f(z) = z%¢3*. Find f'(0).

The Taylor series for e” based at b = 0 is
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We can see that, for m > 2 the coefficient on 2™ is
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On the other hand, this is the Taylor series for f(z) based at b = 0, and so the coefficient on 2™ is equal
to
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Equating these two, we have

and we can say
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Fm(0) = 3m_2m =

Thus, taking m = 11, we have
FUV(0) = 39(11)(10) = 2165130.
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Example. Let f(z) = cos22. Find f®%(0).

We know the Taylor series for cos x based at b = 0 is
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By substitution, we then quickly find
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and we may simplify this to
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Now, with f(z) = cos 22, and b=0, we have
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Here I rewrote the general Taylor series based at zero with then index j to help our thinking.

From this, we can see that if j is not a multiple of four, then f7(0)=0, since the only powers of x which
appear in the Taylor series are multiples of four. If j is a multiple of four, say j = 4n, then
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by matching up the coefficients: the coefficient on each power of z in the left- and right-hand expres-
sions must be the same.

Thus, we can say
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Finally, we may conclude that
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FE(0) = (—1)M 5 & 6.9776 x 1070.



