Taylor polynomials and finding intervals with required error bounds

Here are two examples of finding intervals on which required error bounds between a function and T_{2} are attained.

1. Let's consider the function $f(x)=x \sin ^{3} x$. Suppose we take $b=0$, and want an interval around $b=0$ such that the error

$$
\left|f(x)-T_{2}(x)\right|
$$

is less than 0.01 .
We being by finding $f^{\prime \prime \prime}(x)$. One can show that

$$
f^{\prime \prime \prime}(x)=-9 \sin ^{3}(x)-21 x \cos (x) \sin ^{2}(x)+18 \cos ^{2}(x) \sin (x)+6 x \cos ^{3}(x)
$$

To find a value of M so that

$$
\left|f^{\prime \prime \prime}(x)\right| \leq M
$$

on some interval, we begin by choosing an interval, fairly arbitrarily.
Let's suppose $-1 \leq x \leq 1$. Then, using the fact that $|\sin x| \leq 1$ and $|\cos x| \leq 1$ and

$$
|A+B| \leq|A|+|B|
$$

for any A and B, we may conclude that

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 9+21+18+6=54
$$

Hence, for x in $-1 \leq x \leq 1$, we have $M=54$ and so, by our error bound for T_{2},

$$
\mid \text { error }\left|\leq \frac{M}{6}\right| x-\left.0\right|^{3}=9|x|^{3}
$$

Now, we want the error to be less than 0.01 , and we can achieve that if

$$
9|x|^{3} \leq 0.01
$$

which solves to

$$
|x| \leq 0.10357
$$

Note that this is inside the assumed interval $-1 \leq x \leq 1$.
Thus the error is less than 0.01 for $-0.10356 \leq x \leq 0.10356$.
We could stop here, since we've answered the question.
However, we can improve this interval (i.e., make it bigger) by choosing a different starting interval. Suppose now that $-0.5 \leq x \leq 0.5$. Then

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 9+21(0.5)+18+6(0.5)=40.5
$$

and our error satisfies

$$
\mid \text { error }\left.\left|\leq \frac{40.5}{6}\right| x\right|^{3}
$$

so solving

$$
\frac{40.5}{6}|x|^{3} \leq 0.01
$$

we find the error is less than 0.01 for $-0.1139983 \leq x \leq 0.1139983$. This is a tiny improvement, so hardly worth the trouble.
2. Suppose $f(x)=\sqrt{x}$ and we want T_{2} for f based at $b=1$. Suppose we want an error of less than 0.01 . We begin by finding some derivatives. In particular, we need

$$
f^{\prime \prime \prime}(x)=\frac{15}{8} x^{-7 / 2}
$$

in order use Taylor's error bound to bound the error.
One approach is to begin with an interval around b, and bound $f^{\prime \prime \prime}(x)$ on this interval to get a value of M. Then, use the error bound to solve for a smaller interval on which we can achieve the required error.
For instance, consider the interval $[0.5,1.5]$. We see that $f^{\prime \prime \prime}(x)$ is strictly decreasing on this interval, so it is largest at the left endpoint, so we may take

$$
M=f^{\prime \prime \prime}(0.5)=21.2132 \ldots
$$

Then, the error bound says

$$
\mid \text { error }\left|\leq \frac{21.2133}{6}\right| x-\left.1\right|^{3}
$$

and since we want this less than 0.01 , we solve

$$
\frac{21.2133}{6}|x-1|^{3} \leq 0.01
$$

to find

$$
|x-1| \leq 0.14142
$$

that is, $[0.85858,1.14142]$ is an interval on which we can know the error is less than 0.01 .
We do need to note that this interval is inside the assumed interval [0.5,1.5]. Had it not been, we would have concluded that the required error was achieved on the entire interval [0.5,1.5].
For instance, suppose we started with the interval [0.8, 1.2]. On this interval,

$$
\left|f^{\prime \prime \prime}(x)\right| \leq f^{\prime \prime \prime}(0.8)=4.09436 \ldots
$$

Then we want

$$
\mid \text { error }\left|\leq \frac{4.0944}{6}\right| x-\left.1\right|^{3}<0.01
$$

which yields

$$
|x-1| \leq 0.24471109514 \ldots
$$

Now, this says that the error is less than 0.01 on the interval [$0.7553,1.2447$] provided the bound for M is valid on this interval: but it is not. Hence, what we can say is that the error is less than 0.01 on the largest subinterval of [0.7553, 1.2447] for which our bound for M holds. That largest subinterval is the interval we initially assumed to get that bound, [0.8, 1.2].
In this way, we make a slight improvement over our last interval.

