Math 300 D - Autumn 2014
 Final Exam
 December 9, 2014

Name: \qquad Student ID no. : \qquad

Signature: \qquad

- Check that your exam has six questions.
- Complete all six questions.
- You have 110 minutes to complete the exam.

1. Let \mathcal{F} and \mathcal{G} be families of sets. Prove that $(\cap \mathcal{F}) \cap(\cap \mathcal{G})=\cap(\mathcal{F} \cup \mathcal{G})$.
2. Let a and b be integers. Prove that $a(b+a+1)$ is odd iff a and b are both odd.
3. Let A, B, C, and D be sets. Suppose $A \cap C=B \cap D=\varnothing$. Suppose $A \sim B$ and $C \sim D$. Prove that $A \cup C \sim B \cup D$.
4. (a) Give an example of a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that f is one-to-one, but not onto (i.e., f is injective but not surjective). Prove that f is one-to-one and not onto.
(b) Give an example of a function $g: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that g is onto, but not one-to-one (i.e., g is surjective, but not injective). Prove that g is onto and not one-to-one.
5. Use induction to prove that $n!>n^{2}$ for all integers $n \geq 4$.
6. Let R be the relation defined on the real numbers, \mathbb{R}, by

$$
(x, y) \in R \Leftrightarrow \text { there exist positive integers } n \text { and } m \text { such that } x^{n}=y^{m} .
$$

Prove that R is an equivalence relation.

DeMorgan's laws
$\neg(P \wedge Q)$ is equivalent to $\neg P \vee \neg Q$
$\neg(P \vee Q)$ is equivalent to $\neg P \wedge \neg Q$
Commutative Laws
$P \wedge Q$ is equivalent to $Q \wedge P$
$P \vee Q$ is equivalent to $Q \vee P$
Associative Laws
$P \wedge(Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$
$P \vee(Q \vee R)$ is equivalent to $(P \vee Q) \vee R$ Idempotent Laws
$P \wedge P$ is equivalent to P
$P \vee P$ is equivalent to P
Distributive Laws
$P \wedge(Q \vee R)$ is equivalent to $(P \wedge Q) \vee(P \wedge R)$
$P \vee(Q \wedge R)$ is equivalent to $(P \vee Q) \wedge(P \vee R)$
Absorption Laws
$P \vee(P \wedge Q)$ is equivalent to P
$P \wedge(P \vee Q)$ is equivalent to P
Double Negation Law
$\neg \neg P$ is equivalent to P
Tautology Laws
$P \wedge$ (a tautology) is equivalent to P
$P \vee($ a tautology $)$ is a tautology
$\neg($ a tautology $)$ is a contradiction
Contradiction Laws
$P \wedge$ (a contradiction) is a contradiction
$P \vee$ (a contradiction) is equivalent to P
\neg (a contradiction) is a tautology

Conditional Laws

$P \rightarrow Q$ is equivalent to $\neg P \vee Q$
$P \rightarrow Q$ is equivalent to $\neg(P \wedge \neg Q)$
Contrapositive Laws
$P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$
Quantifier Negation Laws
$\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$
$\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$
Sets

$$
A=B \Leftrightarrow((x \in A) \Leftrightarrow(x \in B))
$$

$$
x \in A \cup B \Leftrightarrow((x \in A) \vee(x \in B))
$$

$$
x \in A \cap B \Leftrightarrow((x \in A) \wedge(x \in B))
$$

$$
x \in A \backslash B \Leftrightarrow(x \in A) \wedge(x \notin B)
$$

