Math 300 D - Autumn 2014 Final Exam December 9, 2014

Name: _____

Student ID no. : _____

Signature: _____

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

- Check that your exam has six questions.
- Complete all six questions.
- You have 110 minutes to complete the exam.

1. Let \mathcal{F} and \mathcal{G} be families of sets. Prove that $(\cap \mathcal{F}) \cap (\cap \mathcal{G}) = \cap (\mathcal{F} \cup \mathcal{G})$.

2. Let a and b be integers. Prove that a(b + a + 1) is odd iff a and b are both odd.

3. Let A, B, C, and D be sets. Suppose $A \cap C = B \cap D = \emptyset$. Suppose $A \sim B$ and $C \sim D$. Prove that $A \cup C \sim B \cup D$. 4. (a) Give an example of a function $f : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that f is one-to-one, but not onto (i.e., f is injective but not surjective). Prove that f is one-to-one and not onto.

(b) Give an example of a function $g : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that g is onto, but not one-to-one (i.e., g is surjective, but not injective). Prove that g is onto and not one-to-one.

5. Use induction to prove that $n! > n^2$ for all integers $n \ge 4$.

6. Let *R* be the relation defined on the real numbers, \mathbb{R} , by

 $(x,y) \in R \Leftrightarrow$ there exist positive integers n and m such that $x^n = y^m$.

Prove that R is an equivalence relation.

DeMorgan's laws $\neg (P \land Q)$ is equivalent to $\neg P \lor \neg Q$ $\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$ **Commutative Laws** $P \wedge Q$ is equivalent to $Q \wedge P$ $P \lor Q$ is equivalent to $Q \lor P$ Associative Laws $P \wedge (Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$ $P \lor (Q \lor R)$ is equivalent to $(P \lor Q) \lor R$ **Idempotent Laws** $P \wedge P$ is equivalent to P $P \lor P$ is equivalent to P**Distributive Laws** $P \land (Q \lor R)$ is equivalent to $(P \land Q) \lor (P \land R)$ $P \lor (Q \land R)$ is equivalent to $(P \lor Q) \land (P \lor R)$ Absorption Laws $P \lor (P \land Q)$ is equivalent to P $P \land (P \lor Q)$ is equivalent to P**Double Negation Law** $\neg \neg P$ is equivalent to *P* Tautology Laws $P \wedge$ (a tautology) is equivalent to P $P \lor$ (a tautology) is a tautology \neg (a tautology) is a contradiction

Contradiction Laws

 $P \land$ (a contradiction) is a contradiction

 $P \lor$ (a contradiction) is equivalent to P \neg (a contradiction) is a tautology **Conditional Laws**

 $P \rightarrow Q$ is equivalent to $\neg P \lor Q$

 $P \rightarrow Q$ is equivalent to $\neg (P \land \neg Q)$

Contrapositive Laws

 $P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$

Quantifier Negation Laws

 $\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$

 $\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$

Sets

$$A = B \Leftrightarrow ((x \in A) \Leftrightarrow (x \in B))$$
$$x \in A \cup B \Leftrightarrow ((x \in A) \lor (x \in B))$$
$$x \in A \cap B \Leftrightarrow ((x \in A) \land (x \in B))$$
$$x \in A \setminus B \Leftrightarrow (x \in A) \land (x \notin B)$$