Math 300 D - Autumn 2014 Final Exam December 9, 2014 Solutions

1. Let \mathcal{F} and \mathcal{G} be families of sets. Prove that $(\cap \mathcal{F}) \cap (\cap \mathcal{G}) = \cap (\mathcal{F} \cup \mathcal{G})$. **Proof:** Let \mathcal{F} and \mathcal{G} be families of sets. Suppose $x \in \cap \mathcal{F} \cap \cap \mathcal{G}$. Then $x \in \cap \mathcal{F}$ and $x \in \cap \mathcal{G}$. Suppose $M \in \mathcal{F}$. Then $x \in M$. Suppose $N \in \mathcal{G}$. Then $x \in N$. Suppose $P \in \mathcal{F} \cup \mathcal{G}$. Then $P \in \mathcal{F}$ or $P \in \mathcal{G}$. Hence, $x \in P$. Thus, *x* is an element of every set in $\mathcal{F} \cup \mathcal{G}$, so $x \in \cap(\mathcal{F} \cup \mathcal{G})$. Hence, $(\cap \mathcal{F}) \cap (\cap \mathcal{G}) \subseteq \cap (\mathcal{F} \cup \mathcal{G}).$ Now, suppose $x \in \cap (\mathcal{F} \cup \mathcal{G})$. Suppose $M \in \mathcal{F} \cup \mathcal{G}$. Then $x \in M$. Suppose $N \in \mathcal{F}$. Then $N \in \mathcal{F} \cup \mathcal{G}$, and so $x \in N$. Hence, *x* is in every set in \mathcal{F} , and so $x \in \cap \mathcal{F}$. Suppose $P \in \mathcal{G}$. Then $P \in \mathcal{F} \cup \mathcal{G}$, and so $x \in P$. Hence, *x* is in every set in \mathcal{G} , and so $x \in \cap \mathcal{G}$. Thus, $x \in (\cap \mathcal{F}) \cap (\cap \mathcal{G})$. Therefore $\cap (\mathcal{F} \cup \mathcal{G}) \subseteq (\cap \mathcal{F}) \cap (\cap \mathcal{G})$, and so $(\cap \mathcal{F}) \cap (\cap \mathcal{G}) = \cap (\mathcal{F} \cup \mathcal{G})$.

2. Let *a* and *b* be integers. Prove that a(b + a + 1) is odd iff *a* and *b* are both odd. **Proof:** Let *a* and *b* be integers.

Suppose a is even.

Then a = 2k for some $k \in \mathbb{Z}$.

Then a(b+a+1) = 2k(b+a+1), and since a, b, and k are integers, k(b+a+1) is an integer. Hence, $2 \mid a(b+a+1)$, i.e., a(b+a+1) is even.

Suppose a is odd and b is even.

Then a = 2k + 1 and b = 2m for some integers k and m.

Then a(b + a + 1) = a(2k + 2m + 1 + 1) = a(2k + 2m + 2) = 2a(k + m + 1). Since a, k, and m are integers, a(k + m + 1) is an integer, and so 2 | a(b + a + 1), i.e., a(b + a + 1) is even.

Suppose a is odd and b is odd.

Then a = 2k + 1 and b = 2m + 1 for some integers k and m. Then

$$a(b+a+1) = (2k+1)(2k+2m+3)$$

= 4k² + 4mk + 8k + 2m + 3
= 2(2k² + 4mk + 4k + m + 1) + 1

Since k and m are integers, $2k^2 + 4mk + 4k + m + 1$ is an integer, and so a(b+a+1) is odd.

Thus, a(b + a + 1) is odd iff a and b are both odd.

3. Let A, B, C, and D be sets. Suppose $A \cap C = B \cap D = \emptyset$. Suppose $A \sim B$ and $C \sim D$. Prove that $A \cup C \sim B \cup D$.

Proof: Let A, B, C, and D be sets. Suppose $A \cap C = B \cap D = \emptyset$. Suppose $A \sim B$ and $C \sim D$. Then there exist bijections $f : A \to B$ and $g : C \to D$.

Define a function $h : A \cup C \rightarrow B \cup D$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in C \end{cases}$$

Since $A \cap C = \emptyset$, the function is well-defined: given an x in $A \cup C$, x is either in A or C, but not both.

Suppose $h(x_1) = h(x_2)$ for some x_1 and x_2 in $A \cup C$.

Suppose $x_1 \in A$, and $x_2 \in A$. Then $h(x_1) = f(x_1) = h(x_2) = f(x_2)$, and so $x_1 = x_2$ since f is injective.

Suppose $x_1 \in C$, and $x_2 \in C$. Then $h(x_1) = g(x_1) = h(x_2) = g(x_2)$, and so $x_1 = x_2$ since g is injective.

Suppose x_1 and x_2 are not both in A or both in C. Without loss of generality, suppose $x_1 \in A$ and $x_2 \in C$. Then $h(x_1) = h(x_2)$ implies that $f(x_1) = g(x_2)$. But $f(x_1) \in B$ and $g(x_2) \in D$, so $B \cap D \neq \emptyset$. This is a contradiction to our assumption that $B \cap D = \emptyset$. Hence, x_1 and x_2 must both be in A or both be in C.

Thus, $x_1 = x_2$, and so *h* is one-to-one.

Suppose $r \in B \cup D$.

Then $r \in B$ or $r \in D$.

Suppose $r \in B$. Then, since f is surjective, there exists an $a \in A$ such that f(a) = r. Also, $a \in A \cup C$, and h(a) = r.

Suppose $r \in D$. Then, since g is surjective, there exists a $c \in C$ such that g(c) = r. Also, $c \in A \cup C$ and h(c) = r.

Hence, there exists $x \in A \cup B$ with h(x) = r, so h is surjective.

Thus, *h* is a bijection, and so $A \cup C \sim B \cup D$.

4. (a) Give an example of a function $f : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that f is one-to-one, but not onto (i.e., f is injective but not surjective). Prove that f is one-to-one and not onto.

Note: There are many examples you could give. If you are using this exam solution to study, I recommend creating a few, as different from each other as possible.

One example is f(x) = x + 1.

We note that since x > 0, x + 1 > 1 and so there is no *a* such that f(a) = 1. So *f* is not onto.

Suppose $f(x_1) = f(x_2)$. Then $x_1 + 1 = x_2 + 1$, and so $x_1 = x_2$. So f is one-to-one.

(b) Give an example of a function $g : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that g is onto, but not one-to-one (i.e., g is surjective, but not injective). Prove that g is onto and not one-to-one.

Note: There are many examples you could give. If you are using this exam solution to study, I recommend creating a few, as different from each other as possible.

Here is one example. Let

$$g(x) = \begin{cases} x & \text{if } x \text{ is odd,} \\ x/2 & \text{if } x \text{ is even.} \end{cases}$$

Let *a* be a positive integer.

Suppose *a* is odd. Then g(a) = a.

Suppose *a* is even. Then $2a \in \mathbb{Z}_{>0}$ and g(2a) = a.

Thus, g is onto.

On the other hand, g(6) = g(3) = 3, so g is not one-to-one.

5. Use induction to prove that $n! > n^2$ for all integers $n \ge 4$.

Proof: Define P(n) to be the statement " $n! > n^{2}$ ".

Base case: Let n = 4. Then $n! = 24 > 16 = n^2$, so P(4) is true.

Induction step: Suppose P(n) is true for some $n = x \ge 4$.

Then $x! > x^2$, i.e. $\frac{x!}{x^2} > 1$.

Then

$$\frac{(x+1)!}{(x+1)^2} = \frac{(x+1)x!}{(x+1)^2 \frac{x^2}{x^2}} = \frac{(x+1)x^2}{(x+1)^2} \left(\frac{x!}{x^2}\right) = \frac{x^2}{x+1} \left(\frac{x!}{x^2}\right) = \left(x-1+\frac{1}{x+1}\right) \left(\frac{x!}{x^2}\right)$$

We note that $x - 1 + \frac{1}{x+1} \ge 4 - 1 + 0 = 3 > 1$, and so, since $\frac{x!}{x^2} > 1$,

$$\frac{(x+1)!}{(x+1)^2} > 1$$

i.e., $(x + 1)! > x^2$. Thus, P(x + 1) is true.

Thus, P(x) implies P(x + 1), and since P(4) is true, by induction P(n) is true for all integers $n \ge 4$.

6. Let *R* be the relation defined on the real numbers, \mathbb{R} , by

 $(x, y) \in R \Leftrightarrow$ there exist positive integers *n* and *m* such that $x^n = y^m$.

Prove that R is an equivalence relation.

Proof: Let $x \in \mathbb{R}$. Then $x^1 = x^1$, and so $(x, x) \in R$. Hence, *R* is reflexive.

Suppose $(x, y) \in R$. Then $x^m = y^n$ for some integers m and n. Then, $y^n = x^m$, and so $(y, x) \in R$.

Hence R is symmetric.

Suppose $(x, y) \in R$ and $(y, z) \in R$. Then $x^m = y^n$ and $y^r = z^s$ for positive integers m, n, r, and s. Then $x^{rm} = y^{rn}$ and $y^{rn} = z^{sn}$, so $x^{rm} = z^{sn}$. Since rm and sn are positive integers, we conclude that $(x, z) \in R$. Hence, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.