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Solutions

1. Let F and G be families of sets. Prove that (∩F) ∩ (∩G) = ∩(F ∪ G).

Proof: Let F and G be families of sets.

Suppose x ∈ ∩F ∩ ∩G.

Then x ∈ ∩F and x ∈ ∩G.

Suppose M ∈ F . Then x ∈ M .

Suppose N ∈ G. Then x ∈ N .

Suppose P ∈ F ∪ G. Then P ∈ F or P ∈ G. Hence, x ∈ P .

Thus, x is an element of every set in F ∪ G, so x ∈ ∩(F ∪ G).

Hence, (∩F) ∩ (∩G) ⊆ ∩(F ∪ G).

Now, suppose x ∈ ∩(F ∪ G).

Suppose M ∈ F ∪ G. Then x ∈ M .

Suppose N ∈ F . Then N ∈ F ∪ G, and so x ∈ N .

Hence, x is in every set in F , and so x ∈ ∩F .

Suppose P ∈ G. Then P ∈ F ∪ G, and so x ∈ P .

Hence, x is in every set in G, and so x ∈ ∩G.

Thus, x ∈ (∩F) ∩ (∩G).

Therefore ∩(F ∪ G) ⊆ (∩F) ∩ (∩G), and so (∩F) ∩ (∩G) = ∩(F ∪ G). �

2. Let a and b be integers. Prove that a(b+ a+ 1) is odd iff a and b are both odd.

Proof: Let a and b be integers.

Suppose a is even.

Then a = 2k for some k ∈ Z.

Then a(b+a+1) = 2k(b+a+1), and since a, b, and k are integers, k(b+a+1) is an integer.

Hence, 2 | a(b+ a+ 1), i.e., a(b+ a+ 1) is even.

Suppose a is odd and b is even.

Then a = 2k + 1 and b = 2m for some integers k and m.

Then a(b+ a+ 1) = a(2k + 2m+ 1 + 1) = a(2k + 2m+ 2) = 2a(k +m+ 1). Since a, k, and
m are integers, a(k +m+ 1) is an integer, and so 2 | a(b+ a+ 1), i.e., a(b+ a+ 1 is even.

Suppose a is odd and b is odd.



Then a = 2k + 1 and b = 2m+ 1 for some integers k and m.

Then

a(b+ a+ 1) = (2k + 1)(2k + 2m+ 3)

= 4k2 + 4mk + 8k + 2m+ 3

= 2(2k2 + 4mk + 4k +m+ 1) + 1.

Since k and m are integers, 2k2+4mk+4k+m+1 is an integer, and so a(b+ a+1) is odd.

Thus, a(b+ a+ 1) is odd iff a and b are both odd.�

3. Let A,B,C, and D be sets. Suppose A ∩ C = B ∩D = ∅. Suppose A ∼ B and C ∼ D. Prove
that A ∪ C ∼ B ∪D.

Proof: Let A,B,C, and D be sets. Suppose A ∩ C = B ∩ D = ∅. Suppose A ∼ B and
C ∼ D. Then there exist bijections f : A → B and g : C → D.

Define a function h : A ∪ C → B ∪D by

h(x) =

{

f(x) if x ∈ A
g(x) if x ∈ C

Since A ∩ C = ∅, the function is well-defined: given an x in A ∪ C, x is either in A or C,
but not both.

Suppose h(x1) = h(x2) for some x1 and x2 in A ∪ C.

Suppose x1 ∈ A, and x2 ∈ A. Then h(x1) = f(x1) = h(x2) = f(x2), and so x1 = x2 since f
is injective.

Suppose x1 ∈ C, and x2 ∈ C. Then h(x1) = g(x1) = h(x2) = g(x2), and so x1 = x2 since g
is injective.

Suppose x1 and x2 are not both in A or both in C. Without loss of generality, suppose
x1 ∈ A and x2 ∈ C. Then h(x1) = h(x2) implies that f(x1) = g(x2). But f(x1) ∈ B and
g(x2) ∈ D, so B ∩ D 6= ∅. This is a contradiction to our assumption that B ∩ D = ∅.
Hence, x1 and x2 must both be in A or both be in C.

Thus, x1 = x2, and so h is one-to-one.

Suppose r ∈ B ∪D.

Then r ∈ B or r ∈ D.

Suppose r ∈ B. Then, since f is surjective, there exists an a ∈ A such that f(a) = r. Also,
a ∈ A ∪ C, and h(a) = r.

Suppose r ∈ D. Then, since g is surjective, there exists a c ∈ C such that g(c) = r. Also,
c ∈ A ∪ C and h(c) = r.

Hence, there exists x ∈ A ∪B with h(x) = r, so h is surjective.

Thus, h is a bijection, and so A ∪ C ∼ B ∪D. �

4. (a) Give an example of a function f : Z>0 → Z>0 such that f is one-to-one, but not onto (i.e., f
is injective but not surjective). Prove that f is one-to-one and not onto.



Note: There are many examples you could give. If you are using this
exam solution to study, I recommend creating a few, as different from
each other as possible.

One example is f(x) = x+ 1.

We note that since x > 0, x+1 > 1 and so there is no a such that f(a) = 1. So f is not
onto.

Suppose f(x1) = f(x2). Then x1 + 1 = x2 + 1, and so x1 = x2. So f is one-to-one. �

(b) Give an example of a function g : Z>0 → Z>0 such that g is onto, but not one-to-one (i.e., g
is surjective, but not injective). Prove that g is onto and not one-to-one.

Note: There are many examples you could give. If you are using this
exam solution to study, I recommend creating a few, as different from
each other as possible.

Here is one example. Let

g(x) =

{

x if x is odd,
x/2 if x is even.

Let a be a positive integer.

Suppose a is odd. Then g(a) = a.

Suppose a is even. Then 2a ∈ Z>0 and g(2a) = a.

Thus, g is onto.

On the other hand, g(6) = g(3) = 3, so g is not one-to-one. �

5. Use induction to prove that n! > n2 for all integers n ≥ 4.

Proof: Define P (n) to be the statement “n! > n2”.

Base case: Let n = 4. Then n! = 24 > 16 = n2, so P (4) is true.

Induction step: Suppose P (n) is true for some n = x ≥ 4.

Then x! > x2, i.e.
x!

x2
> 1.

Then

(x+ 1)!

(x+ 1)2
=

(x+ 1)x!

(x+ 1)2 x
2

x2

=
(x+ 1)x2

(x+ 1)2

(

x!

x2

)

=
x2

x+ 1

(

x!

x2

)

=

(

x− 1 +
1

x+ 1

)(

x!

x2

)

We note that x− 1 + 1

x+1
≥ 4− 1 + 0 = 3 > 1, and so, since x!

x2 > 1,

(x+ 1)!

(x+ 1)2
> 1



i.e., (x+ 1)! > x2. Thus, P (x+ 1) is true.

Thus, P (x) implies P (x + 1), and since P (4) is true, by induction P (n) is true for all
integers n ≥ 4. �

6. Let R be the relation defined on the real numbers, R, by

(x, y) ∈ R ⇔ there exist positive integers n and m such that xn = ym.

Prove that R is an equivalence relation.

Proof: Let x ∈ R. Then x1 = x1, and so (x, x) ∈ R.

Hence, R is reflexive.

Suppose (x, y) ∈ R. Then xm = yn for some integers m and n.

Then, yn = xm, and so (y, x) ∈ R.

Hence R is symmetric.

Suppose (x, y) ∈ R and (y, z) ∈ R.

Then xm = yn and yr = zs for positive integers m,n, r, and s.

Then xrm = yrn and yrn = zsn, so xrm = zsn.

Since rm and sn are positive integers, we conclude that (x, z) ∈ R.

Hence, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation. �


