Math 300 D - Autumn 2014
Final Exam
December 9, 2014
Solutions

1. Let F and G be families of sets. Prove that (NF) N (NG) = N(FUG).
Proof: Let 7 and G be families of sets.
Suppose z € NF NNG.
Then z € NF and z € NG.
Suppose M € F. Thenz € M.
Suppose N € G. Thenx € N.
Suppose P € FUG. Then P € For P € G. Hence, x € P.
Thus, z is an element of every set in F UG, so x € N(F UG).
Hence, (NF) N (NG) C N(FUQG).

Now, suppose z € N(F U G).

Suppose M € FUG. Thenx € M.

Suppose N € F. Then N € FUG,andsoz € N.

Hence, z is in every set in F, and so x € NF.

Suppose P € G. Then P € F UG, and so x € P.

Hence, z is in every set in G, and so z € NG.

Thus, z € (NF) N (NG).

Therefore N(FUG) C (NF)N(NG),and so (NF)N(NG) =nN(FUG). &

2. Let a and b be integers. Prove that a(b+ a + 1) is odd iff a and b are both odd.
Proof: Let a and b be integers.
Suppose a is even.
Then a = 2k for some k € Z.
Then a(b+a+1) = 2k(b+a+1), and since a, b, and k are integers, k(b+a+ 1) is an integer.
Hence, 2 | a(b+a+1),ie,a(b+ a+ 1) is even.

Suppose a is odd and b is even.
Then a = 2k + 1 and b = 2m for some integers k and m.

Thena(b+a+1) =al2k+2m+1+1) = a(2k +2m + 2) = 2a(k + m + 1). Since a, k, and
m are integers, a(k + m + 1) is an integer, and so 2 | a(b+ a + 1), i.e., a(b+ a + 1 is even.

Suppose a is odd and b is odd.



4.

Then a = 2k + 1 and b = 2m + 1 for some integers k£ and m.
Then

alb+a+1)= 2k +1)(2k + 2m + 3)
= 4k* 4 4mk + 8k + 2m + 3
= 2(2k* + dmk + 4k + m + 1) + 1.

Since k and m are integers, 2k* + 4mk + 4k +m+ 1 is an integer, and so a(b+ a+ 1) is odd.

Thus, a(b + a + 1) is odd iff @ and b are both odd.®

. Let A, B,C, and D be sets. Suppose ANC = BN D = @. Suppose A ~ B and C' ~ D. Prove

that AUC ~ BUD.

Proof: Let A, B,C, and D be sets. Suppose ANC = BN D = &. Suppose A ~ B and
C' ~ D. Then there exist bijections f : A — Band g: C — D.

Define a function . : AUC — B U D by

| flx) ifzeA
h(m)_{g(:p) ifrecC

Since AN C = @, the function is well-defined: given an = in AU C, z is either in A or C,
but not both.

Suppose h(z1) = h(z3) for some z; and 2, in AU C.

Suppose z; € A, and x5 € A. Then h(x1) = f(x1) = h(x2) = f(x2), and so x; = x5 since f
is injective.

Suppose z; € C, and x5 € C. Then h(z1) = g(z1) = h(xs) = g(x2), and so x; = z, since g
is injective.

Suppose z; and z, are not both in A or both in C'. Without loss of generality, suppose
xy € Aand xo € C. Then h(x;) = h(zy) implies that f(x;) = g(x2). But f(z;) € B and

g(z2) € D,so BN D # @. This is a contradiction to our assumption that BN D = @.
Hence, z; and z, must both be in A or both be in C.

Thus, z; = x5, and so h is one-to-one.

Supposer € BU D.
Thenr € Borr e D.

Suppose r € B. Then, since f is surjective, there exists an a € A such that f(a) = r. Also,
ac AUC,and h(a) =r.

Suppose r € D. Then, since g is surjective, there exists a ¢ € C such that g(c) = r. Also,
ce AUC and h(c) = .

Hence, there exists = € AU B with h(z) = r, so h is surjective.
Thus, h is a bijection, and so AUC ~ BUD. &

(a) Give an example of a function f : Z~o — Z=q such that f is one-to-one, but not onto (i.e., f
is injective but not surjective). Prove that f is one-to-one and not onto.



Note: There are many examples you could give. If you are using this
exam solution to study, I recommend creating a few, as different from
each other as possible.

One example is f(z) =2 + 1.

We note that since z > 0, x + 1 > 1 and so there is no a such that f(a) = 1. So f is not

onto.

Suppose f(z1) = f(z2). Then zy +1 = 29 + 1, and so x; = x9. So f is one-to-one. W
(b) Give an example of a function g : Z~o — Z~ such that g is onto, but not one-to-one (i.e., g

is surjective, but not injective). Prove that g is onto and not one-to-one.

Note: There are many examples you could give. If you are using this
exam solution to study, I recommend creating a few, as different from
each other as possible.

Here is one example. Let

(z) = x if x is odd,
&)= xz/2 if x is even.

Let a be a positive integer.

Suppose a is odd. Then g(a) = a.

Suppose a is even. Then 2a € Z~ and ¢(2a) = a.

Thus, g is onto.

On the other hand, ¢(6) = ¢(3) = 3, so g is not one-to-one. B

5. Use induction to prove that n! > n? for all integers n > 4.
Proof: Define P(n) to be the statement “n! > n?”.
Base case: Let n = 4. Then n! = 24 > 16 = n?, so P(4) is true.

Induction step: Suppose P(n) is true for some n = = > 4.

|
. xl

Then z! > 2%, ie. — > 1.
x

Then

:a:a—ji—l _2)
() ()

We note that z — 1+ -5 >4 —1+0=23> 1, and so, since % > 1,

(x+1)!

—>1
(x+1)2



ie., (x+1)! > z% Thus, P(x + 1) is true.
Thus, P(x) implies P(x + 1), and since P(4) is true, by induction P(n) is true for all
integersn > 4. &

. Let R be the relation defined on the real numbers, R, by

m

(x,y) € R < there exist positive integers n and m such that z" = y™.

Prove that R is an equivalence relation.
Proof: Letx € R. Then 2! = 2!, and so (z,z) € R.

Hence, R is reflexive.

Suppose (z,y) € R. Then 2™ = y" for some integers m and n.
Then, y" = 2™, and so (y,x) € R.

Hence R is symmetric.

Suppose (z,y) € Rand (y, z) € R.

Then 2™ = y" and y" = 2° for positive integers m, n, r, and s.
Then 2™ = y™ and y™ = 2*", so 2™ = 2°".

Since rm and sn are positive integers, we conclude that (z, z) € R.

Hence, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation. B



